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Recently, the continuity equation (also known as the advection equation) has been used to study stability properties
of dynamical systems, where a linear transfer operator approach was used to examine the stability of a nonlinear
equation both in continuous and discrete time (Vaidya and Mehta, IEEE Trans Autom Control 2008, 53, 307–
323; Rajaram et al., J Math Anal Appl 2010, 368, 144–156). Our study, which conducts a series of simulations
on residential patterns, demonstrates that this usage of the continuity equation can advance Haken’s synergetic
approach to modeling certain types of complex, self-organizing social systems macroscopically. The key to this
advancement comes from employing a case-based approach that (1) treats complex systems as a set of cases and
(2) treats cases as dynamical vsystems which, at the microscopic level, can be conceptualized as k dimensional
row vectors; and, at the macroscopic level, as vectors with magnitude and direction, which can be modeled as
population densities. Our case-based employment of the continuity equation has four benefits for agent-based and
case-based modeling and, more broadly, the social scientific study of complex systems where transport or spatial
mobility issues are of interest: it (1) links microscopic (agent-based) and macroscopic (structural) modeling; (2)
transforms the dynamics of highly nonlinear vector fields into the linear motion of densities; (3) allows predictions
to be made about future states of a complex system; and (4) mathematically formalizes the structural dynamics of
these types of complex social systems. © 2012 Wiley Periodicals, Inc. Complexity 000: 00–00, 2012
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1. INTRODUCTION

T his article uses the continuity equation in a novel way
to extend Haken’s [1] synergetic approach to modeling
complex social systems macroscopically, where trans-

port or spatial mobility issues are of interest (e.g., residential
mobility, traffic patterns, swarm behavior, groups/collective
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behavior, population densities). Our novel usage of the con-
tinuity equation is based on our unique approach to case-
based modeling, which (1) treats complex systems as a set
of cases and (2) conceptualizes cases as individual dynamic
entities, which, at the microscopic level, are defined as
k dimensional row vectors and, at the macroscopic level,
as vectors with magnitude and direction, which, using the
continuity equation, we model as population densities.

Our interest in the continuity equation (also known as
the advection equation) is based on recent research where
a linear transfer operator approach was used to examine the
stability of a nonlinear equation both in continuous and dis-
crete time [2, 3]. The main idea is that while the motion of
individual cases (their trajectories) can be highly nonlinear,
the motion of an ensemble of such trajectories is governed
by a linear transfer operator, namely, the Perron-Frobenius
operator. We see such an approach as directly relevant to
synergetics.

Synergetics concerns itself with complex (nonequilibrium
thermodynamic) systems that can “form spatial, temporal
or functional structures by means of self-organization” [1].
Key to a self-organizing system is the emergence of order
parameters, as opposed to control parameters. In a syner-
getic system, control parameters can be conceptualized as
microlevel interactions and rules governing behavior, which
can be grouped into one of two types: internal or exter-
nal. In an agent-based or case-based model, for example,
internal control parameters can be the microscopic rules gov-
erning the interactive transport of agents. In contrast, order
parameters are macroscopic controls (which, sociologically
speaking, can be thought of as social structure). In general,
these controls are dimensionally “low dynamic.” These order
parameters (self-organizing, emergent social structures) are
key to synergetics (and to our novel usage of the continu-
ity equation) because their “low dynamics” allow them to
be modeled macroscopically and, more specifically for our
purposes, conceptualized formally as densities: despite the
complexity, nonlinearity, or diversity of the microscopic (or
mesoscopic) behavior of a self-organizing system’s agents, at
the macroscopic level these behaviors and their coordination
can be modeled as population (probability) densities via the
continuity equation.

Our novel usage of the continuity equation is directly con-
nected to our work in agent-based and case-based modeling.
While readers will be familiar with the former, the latter is a
new area of study, so we will review it quickly. Case-based
modeling (although traditionally not computational) is an
established technique in the social sciences, used for con-
ducting in-depth, idiographic, comparative analyses of cases
and their variable-based configurations [4]. Only recently,
however (as in the last few years) researchers have begun to
explore its potential for modeling complex systems, particu-
larly with large databases and as a computational technique
[5–8]. The premise for this new line of inquiry, expressed by

Byrne [5], is that cases are the methodological equivalent of
complex systems.

Despite the differences between agent-based and case-
based modeling, they both struggle with similar limitations,
which the continuity equation, grounded in our case-based
approach, can address. First, it provides a way to link micro-
level and macro-level behaviors, as well as link agency (e.g.,
agent-based behavior) and structure (e.g., population densi-
ties). To connect microscopic rules to macroscopic patterns,
the continuity equation allows the control parameters of a
case-based or agent-based model to evolve across time/space
to discover their macroscopic order parameters, which man-
ifest themselves as transient motion of densities. Discovering
the motion of densities leads to the second utility of the
continuity equation: it transforms the dynamics of complex,
nonlinear, and diverse vector fields into the linear motion of
densities. Third, as a differential equation, it allows predic-
tions to be made about future states of a complex system.
Finally, it mathematically formalizes the structural dynamics
of complex social systems where transport or spatial mobility
issues are of interest, which is difficult in the social sciences
to do.

To demonstrate the utility of our approach, our article is
organized as follows. First, given the general familiarity of
agent-based modeling, we provide a quick overview of case-
based modeling by reviewing the SACS Toolkit, a new case-
based modeling method that we developed. In terms of the
continuity equation, the SACS Toolkit is important because it
(a) conceptualizes complex systems as a set of cases and (b)
treats this set of cases as a matrix of k dimensional vectors
(cases) which, (c) at the macroscopic level, can be given mag-
nitude and direction and modeled as population densities.
Second, with a basic understanding of the SACS Toolkit and
its case-based modeling approach established, we review the
continuity equation, focusing on how a matrix of k dimen-
sional vectors (be they cases or agents) can be converted
into a vector field f with magnitude and direction, allowing
for the transformation of nonlinear, complex, diverse case-
based vector fields into population densities. Third, we apply
our usage of the continuity equation to an example from our
recent research on residential mobility patterns, conducting
a series of simulations. Our focus on residential migration
patterns was chosen because it is an example of a synergetic
system where a complex, nonlinear microscopic vector field
of diverse agents (each with its own magnitude and direction)
self-organizes into an ordered and, scale-wise, spatially large
complex system [6].

2. CASE-BASED MODELING AND THE SACS TOOLKIT:
A MATHEMATICAL OUTLINE

Researchers in the social sciences currently employ a vari-
ety of mathematical/computational models for studying
complex systems. Despite the diversity of these models,
the majority can be grouped into one of four types: agent
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(rule-based) modeling, dynamical (equation-based) model-
ing, network (structural) modeling, and statistical (aggregate-
based) modeling. Case-based modeling constitutes a fifth
type [6, 9]. The premise for this new line of inquiry, expressed
by [5], is that cases are the methodological equivalent of
complex systems. One such example of a case-based model
designed for studying complex systems, which we review
here, is the SACS Toolkit [9].

2.1. Complex Systems as k Dimensional Vectors/Cases
The SACS Toolkit is a case-based, mixed-method, system-
clustering, data-compressing, theoretically driven toolkit for
modeling complex social systems. Its vector-based approach
to modeling [10] is defined as follows:

1. The SACS Toolkit is a variation on Byrne’s [5] general
premise regarding the link between cases and complex
systems.

2. For the SACS Toolkit, case-based modeling is the study of
a complex system S as a set of cases ci such that:

S = {ci : ci is a case relevant to the system under study.
(1)

3. At minimum, S is composed of one case ci .
4. We denote the number of cases being studied by n.
5. Each case ci in S is a k dimensional row vector ci =

[xi1, . . . , xik], where each xij represents a measurement on
one of the variables being used to model a complex system.

6. The variables used to model a complex social system are
one of two types: social practices Pi and environmental
forces Ei .

7. Social practices Pi are the social system’s variables, includ-
ing social, cultural, economic, political, and psychological
factors. The set of social practices is called the web of social
practices Ws , where

Ws = {Pi : Pi is a social practice relevant to

the system of study}. (2)

8. As a set of social practices Ws , a complex system S is exter-
nally impacted by a set of environmental forces Es , which
consists of individual environmental forces denoted by Ei .
We write the set of all environmental forces as follows:

Es = {Ei : Ei is an environmental force relevant to

the system of study}. (3)

9. A complex system S (and its set of cases) self-organizes
around and emerges out of the coupling of social practices
Pi and environmental forces Ei .

10. Because S consists of n cases {ci}n
i=1, and each case ci has

a vector configuration of k dimensions, it is natural to
represent S, at least initially and at its most basic, in the
form of a data matrix D as follows:

D =

⎡
⎢⎢⎣

c1

...
cn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x11 . . . x1k
...

. . .
...

xn1 . . . xnk

⎤
⎥⎥⎦ . (4)

11. In the notation above, the n rows in D represent the set of
cases {ci} in S, and the k columns represent the measure-
ments on some finite partition ∪p

i=1Oi of Ws and Es that
couple to form the vectors for each ci .

12. Putting the above together, we can summarize D as shown
in (4), where each ci ∈ D is a case-based k dimensional
row vector ci = [xi1, . . . , xik] composed of a set of mea-
surements on Ws and Es ; and, the k-dimensions of each
ci in S can be thought of as the vertices of a graph, with
vertices being nonempty elements of any finite partition
of Ws or Es .

3. COMPLEX SYSTEMS ACROSS TIME/SPACE
1. While the above definition is discrete, cases ci (like agents

in agent-based modeling) ultimately are not static; they
are dynamic and evolving. For the SACS Toolkit, there-
fore, cases ci are ultimately treated as discrete dynamical
systems ci(j), where j denotes the time instant tj .

2. If cases ci change across time/space, so too must their
vector configurations ci = [xi1, . . . , xik]; that is, their mea-
surements on Ws or Es in D. As such, D is composed of a
series of ci(j), one for each discrete moment in time/space
tj , on which a set of measurements are taken to construct
a particular model of S.

3. If cases are discrete dynamical systems ci(j) (continuous
time dynamical systems represented as ci(t) with time t
being continuous), it therefore follows that, as a final defi-
nition, a complex system S is a set of cases {ci}, with each
case ci constituting one of its possible ways of practice
across time/space, based on the coupling of Ws and Es .

4. MODELING CASES/AGENTS MACROSCOPICALLY
Because the SACS Toolkit is a data compression (as opposed
to data reduction) technique, the cases/agents within a com-
plex system can be studied at multiple levels of analysis, from
the microscopic to the macroscopic, as well as at the intersec-
tion of these different levels of scale. At the macroscopic level,
the focus is on the entire complex system (as a set of interact-
ing cases), particularly its movement across time/space, as in
the case of the continuity equation. Switching to the macro-
scopic level, however, requires the concept of cases as vectors
to be developed.

4.1. Cases as Euclidean Vectors
Applying the continuity equation, the SACS Toolkit reduces
the set of cases/agents in a complex system to a Euclidean
vector field, which we can write as follows:

ci ≈ f (x). (5)
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Following this equation, each case in a complex system is
mapped to a vector f (x) placed at a position x. Assignment
of magnitude and direction to this vector field is based on
empirically grounded, case-based information, often simu-
lated in the form of some agent-based model, learned earlier
(as we explained in the Introduction section) by allowing the
macroscopic patterns of the model to emerge. In so doing,
these emergent, self-organizing patterns can be transformed
(in terms of order parameters) into population densities, with
appropriate assignment of vector field f (x).

Because macroscopic modeling (which, in this case, is
done using the continuity equation) is a consequence of what
was learned by studying a microscopic (e.g., agent-based or
case-based) model and its microscopic control parameters,
we see it as assisting agent-based and case-based model-
ing. It picks up where they leave off, so to speak, allowing
us to formalize, as order parameters, its structural dynamics
in mathematical terms.We turn, now, to a more formal review
of the continuity equation.

5. THE CONTINUITY EQUATION
The continuity equation has been used extensively in fluid
mechanics and electromagnetism to model the transport of
physical quantities such as mass and charge, respectively
[11, 12]. The key aspect of the continuity equation, partic-
ularly for social scientists to understand, is that it models
the transport of a physical quantity (which could be any-
thing, including people, social groups, traffic patterns, swarm
behaviors, populations, etc) according to a given vector field
f in addition to conserving the physical quantity itself. The
dynamical state of the continuity equation is typically a den-
sity function. The density function ρ is nothing but the phys-
ical quantity per unit area in two dimensions. Recently, the
continuity equation (also known as the advection equation)
has been used to study stability properties of dynamical sys-
tems, where a linear transfer operator approach was used to
study the stability of a nonlinear equation both in continuous
and discrete time [2, 3].

6. THE CONTINUITY EQUATION AS A MODEL FOR
RESIDENTIAL MOBILITY

Given its complexity, particularly for social scientists, we can
only provide here a very quick overview of the continuity
equation. For those not familiar with this equation, see [2, 3].
The continuity equation is as follows:

ρt + � · (f ρ) = 0; ρ|�i = 0; ρ(x, y, 0) = ρ0(x, y), (6)

where ρ(x, y, t) is the population density as a function of
space and time variables; and, (x, y) ∈ �, t ∈ [0, ∞), �i =
{x ∈ ∂� : f · η < 0} is the inflow portion of the boundary ∂�,
with η being the outward unit normal at every point on the
boundary x ∈ ∂�. The initial population density is given by
ρ0(x), and hence by the conservation property of population

mentioned above, we have the following where P0 refers to
the initial population:

P(t) =
∫∫

�

ρ(x, y, t)dxdy =
∫∫

�

ρ0(x, y)dxdy = P0. (7)

The solution of (6) can be written using the Perron-
Frobenius linear transfer operator Pt : L1(�) → L1(�),
defined as follows:

Pt ρ = ρ(φ−t (x))

∣∣∣∣ dφ−t (x)

dx

∣∣∣∣ , (8)

where φt (x) denotes the flow map for ẋ = f (x) starting at the
point x ∈ R

2, and | · | denotes the determinant of a matrix. For
more details on the Perron-Frobenius operator, we refer the
reader to [13].

7. APPLYING THE CONTINUITY EQUATION TO RESIDENTIAL
MOBILITY

We recently completed a study on residential mobility and its
impact on community-level health [6]. For our study, we were
interested in the social phenomenon in the United States
known as sprawl. In complexity science terms, sprawl is a
series of microscopic behaviors engaged in by a network
of individual agents. More concretely, it is the unplanned
out-migration (flow) of affluent populations into the sub-
urban and semi-rural tiers surrounding an urban area. The
unplanned nature of sprawl comes from the fact that, like
many synergetic systems, no single force or agent is steering
it. Instead, the complex system is evolving, self-organizing,
and emerging on its own, the result of a large number of
adaptive, self-focused agents, across different communities,
interested in upward social mobility.

As sprawl evolves, it creates a geographical network of seg-
regation and exclusion where communities become, in many
ways, relative islands in terms of resource usage, politics,
wellbeing, and so on, with movement among communities
being largely automobile dependent. A significant, macro-
scopic consequence of this segregation is that communities
tend to be divided into rich, middle and poor, with the poor
communities falling into what Bowels et al. [14] call a poverty
trap: a self-reinforcing situation of persistent and intractable
poverty. In short, sprawl is a complex systems problem.

To examine this issue, we built a simple agent-based
model, based on an in-depth empirical inquiry of a Midwest-
ern County in the United States.The model we built was called
Summit Sim. (To run the model or download its code, visit
http://www.personal.kent.edu/∼mdball/pareto_
schelling_mobility.htm.) In our two-dimensional model
are three populations: rich, middle, and poor. Sprawling
movement in Summit-Sim is based on three rules: (a) rich
agents seek to live near rich agents; (b) middle-class agents
seek to live near rich agents; if they cannot, they seek to live
near other middle-class agents; if they find themselves in a
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FIGURE 1

Steady state distribution of rich, middle class, and poor agents using
Summit-Sim.

neighborhood with four or more middle-agents, they stay;
and (c) poor agents seek to live near middle-class agents; if
they cannot, they stay where they are. The mobility of rich,
middle class, and poor agents was programmed in decreas-
ing order. In addition, a preference degree that is, the number
of rich agents that are required to satisfy the rich, etc., was
programmed. As shown in Figure 1, it was seen in Summit-
Sim that regardless of the initial distribution of agents, as long
as the preference degree was kept below a certain threshold
spatial segregation and clustering resulted.

The question, however, was why did this macroscopic
order emerge? In other words, was it possible to mathemati-
cally state how the microscopic rules governing the behavior
of these three coupled populations resulted in the macro-
scopic pattern we found? It was at this point that, given
the utility of synergetics for dealing with such types of sys-
tems, we turned to the possibility of order parameters and
the continuity equation. For our macroscopic model, social
mobility was formally defined as modeling the evolution of
rich, middle class, and poor population densities in a given
two-dimensional domain � ⊂ R

2. For our model, we made
the following assumptions:

1. We modeled the evolution of a population density ρ rather
than an actual population P because the former lends itself

FIGURE 2

Contour plots of rich density at the initial, intermediate, and final time
instants for scenario 1.
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FIGURE 3

Contour plots of middle class density at the initial, intermediate, and
final time instants for scenario 1.

FIGURE 4

Contour plots of poor density at the initial, intermediate, and final time
instants for scenario 1.
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FIGURE 5

Contour plots of rich density at the initial, intermediate, and final time
instants for scenario 2.

FIGURE 6

Contour plots of middle class density at the initial, intermediate, and
final time instants for scenario 2.
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FIGURE 7

Contour plots of poor density at the initial, intermediate, and final time
instants for scenario 2.

to a linear approach. Modeling the evolution of actual pop-
ulation leads to an agent-based model which is highly non-
linear. The actual population in a two-dimensional region
D is the volume subtended by the density function on the
region D in the x−y plane, that is, P(t) = ∫∫

D ρ(x, y, t)dxdy.
2. We were only interested in modeling the evolution of the

population densities of rich, middle class, and poor popu-
lations, as governed by mobility rules that were built into
a nonlinear vector field f . Even though the vector field f is
nonlinear, the evolution of a population density accord-
ing to f is linear. In addition, we are not interested in
modeling population growth or decay, and hence the total
population (which is the volume subtended by the den-
sity on the entire domain) is a constant independent of
time, that is, Ptotal(t) = ∫∫

�
ρ(x, y, t)dxdy ≡ C( constant ).

Such a conservation property is automatically built into
the continuity equation.

3. We assumed that there was no influx or outflux of the
population through the boundary of the domain under
consideration. This means that the population density
at all inflow on the boundary of the domain was zero.
Mathematically, this meant that we needed to impose a
homogeneous Dirichlet boundary condition at the inflow
points on the boundary of � (see Eq. (6)).

4. We assumed that the domain � ⊂ R
2 had a smooth

boundary such that every point on the boundary had a
well-defined outward unit normal vector.

8. MODEL AND SIMULATION RESULTS
We programmed the order parameters for the vector field f (x)

for rich, middle, and poor populations as follows:

1. Rich: The rich seek to move toward the rich if the value
of rich density ρR(x, y, t) is lesser than a predetermined
rich high threshold tH

R . We pointed the vector field for rich
fR(x, y) toward the gradient of initial rich density ρR

0 (x, y),
that is, fR(x, y) = � ·ρR

0 (x, y). We also multiplied the vector
field fR(x, y) with a positive scalar quantity that we call rich
mobility mR. Otherwise, the rich stay put, that is, fR(x, y) =
(0, 0)T .

2. Middle Class: In regions where the middle class density
ρ(x, y, t) is between a predetermined low and high thresh-
old (tL

M and tH
M), if the absolute difference between middle

class and rich in those regions is within a predetermined
rich low threshold tL

R , then the middle class will move
toward the rich, and hence, we point the middle class
vector field in those regions toward the gradient of the
initial rich density ρR

0 (x, y) (i.e., fM(x, y) = (� · ρR
0 (x, y)). If

the absolute difference is not within tL
R , then the middle

class moves in the direction of gradient of initial middle
class density ρM

0 (x, y), that is, fM(x, y) = � · ρM
0 (x, y). In

all other regions including the region where the rich den-
sity is larger than tH

R , the middle class will not move, and
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hence fM(x, y) = (0, 0)T . We also multiplied the vector field
fM(x, y) with a positive scalar quantity that we call middle
class mobility mM.

3. Poor: If the poor density ρP(x, y, t) is larger than a certain
poor high threshold ρH

P , then the poor vector field fP(x, y)

is zero in that region. Otherwise fP(x, y) = �·ρM
0 (x, y), that

is, the poor move in the direction of the gradient of the
initial middle class density. In a similar manner as above,
we used a scalar multiple mP to model the mobility of the
poor.

4. Mobility: We chose a scalar quantity to model the mobility
because that would increase or decrease the actual velocity
of movement at each point (x, y) ∈ �.

5. Domain: We chose the domain � to be a circular region of
radius 50 units.

6. Initial distribution: We chose an initial distribution of rich,
middle class, and poor densities. We used the Cauchy
distribution (could have used any distribution) to create
bump functions centered appropriately.

The first scenario of initial distribution is chosen as follows:
ρR

0 (x, y), the initial rich density was chosen to be a single
bump at (15, 0). ρM

0 (x, y), the initial middle class density
ρM

0 (x, y) was chosen to consist of six bumps on an ellipse
centered at (0, 0). The initial poor density was chosen to
be two bumps (one at (0, 20) and another at (0, −20)). The
spread of the bumps were chosen so that there was not
much of overlap. FlexPDE simulation software was used
to simulate the continuity equation programmed with the
above mobility rules. (To view or download the model, visit
http://www.personal.kent.edu/∼mdball/macro_
model.htm.)

The first set of plots Figures 2–4 (shown above) is the con-
tour plot of the density of rich, middle class, and poor at three
time instants (initial, intermediate, and final) where the initial
time instant shows the initial distributions according to the
first scenario. The second set of plots Figures 5–7 is the con-
tour plot for density of rich, middle class, and poor for three
time instants, where the initial time instant is according to a
second scenario.

It is clear that with the mobility rules that we set above, the
rich are moving closer to the rich.The middle class, because of
the specific initial distribution of six bumps that we chose for
scenario 1 Figures 2–4, are becoming more or less homoge-
nous, except for a small blue region where the rich dominate.
In scenario 2 Figures 5–7, the middle class are moving closer
to the rich or toward each other. Most of the poor stay put
except for some that tend to move toward the middle class.

The same clustering and spatial segregation of affluence was
noticed in the Summit Sim model. Hence the agent-based
rules that were tested in Summit Sim have been translated
into macroscopic movements, and the results are very similar.

9. CONCLUSIONS
As we hope our demonstration has sufficiently suggested, the
continuity equation has the ability to extend synergetics in
the macroscopic modeling of complex, self-organizing social
systems; particularly in the case of social systems where the
transport of agents/cases can be modeled spatially, such as
residential mobility. The continuity equation accomplishes
this task by conceptualizing order parameters as the macro-
scopic mobility of population densities. More concretely, our
simulations showed that the microscopic rules that led to spa-
tial segregation in our agent-based model, Summit Sim, could
be translated into movements toward the gradient of the ini-
tial distribution of densities, depending on certain threshold
conditions. As we have stated several times now, we believe
that such an approach assists agent-based and case-based
modeling by (1) linking macroscopic and microscopic model-
ing; (2) transforming the dynamics of highly nonlinear vector
fields into the linear motion of densities; (3) letting predic-
tions to be made about future states of a complex system; and
(4) allowing formalization and generalizations to be made to
similar complex systems.

We do, however, need to mention the following drawbacks
for using the continuity equation as a model of mobility: First,
like always, it is not possible to model complex systems that
exhibit chaotic behavior due to the inherent sensitivity of
the qualitative behavior of solutions to initial conditions and
parameters. Second, the continuity equation can be used only
when some idea of the average behavior (over time) of the
agents in an agent-based model is known. The vector field f
is static (i.e., time independent), and hence the predictions of
the model are valid only under the assumption that the aver-
age same mobility rules are obeyed. This can also be thought
of as an advantage of the method, since educated guesses for
the average mobility rule can be simulated and the solution
of the agent-based model and the continuity equation can
be compared. Finally, finite element-based simulators such
as FlexPDE are commercially available for simulations on
two- and three-dimensional domains (more so for 2D). The
continuity equation being a PDE has the same numerical lim-
itations as simulating any other PDE. Fortunately, there exist
a lot of situations which can be modeled macroscopically as
the motion of densities in 2D.
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