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Allostatic load (AL) is a complex clinical construct, providing a unique window into the cumulative impact of stress.

However, due to its inherent complexity, AL presents two major measurement challenges to conventional statistical

modeling (the field’s dominant methodology): it is comprised of a complex causal network of bioallostatic systems,

represented by an even larger set of dynamic biomarkers; and, it is situated within a web of antecedent socioecological

systems, linking AL to differences in health outcomes and disparities. To address these challenges, we employed case-

based computational modeling (CBM), which allowed us to make four advances: (1) we developed a multisystem,

7-factor (20 biomarker) model of AL’s network of allostatic systems; (2) used it to create a catalog of nine different clin-

ical AL profiles (causal pathways); (3) linked each clinical profile to a typology of 23 health outcomes; and (4)

explored our results (post hoc) as a function of gender, a key socioecological factor. In terms of highlights, (a) the

Healthy clinical profile had few health risks; (b) the pro-inflammatory profile linked to high blood pressure and dia-

betes; (c) Low Stress Hormones linked to heart disease, TIA/Stroke, diabetes, and circulation problems; and (d) high

stress hormones linked to heart disease and high blood pressure. Post hoc analyses also found that males were overre-

presented on the High Blood Pressure (61.2%), Metabolic Syndrome (63.2%), High Stress Hormones (66.4%), and High

Blood Sugar (57.1%); while females were overrepresented on the Healthy (81.9%), Low Stress Hormones (66.3%), and

Low Stress Antagonists (stress buffers) (95.4%) profiles. VC 2015 Wiley Periodicals, Inc. Complexity 000: 00–00, 2015
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INTRODUCTION
Allostatic Load as a Complex System

A
llostatic load (AL) is a highly useful framework—

introduced by McEwen and colleagues [1–7]—for

understanding the cumulative health costs (‘‘wear

and tear’’) associated with stress, particularly short-term-

intense or chronic distress.

The theoretical framework for AL follows a complex,

multidimensional and multilevel trajectory: situated within

a wider set of intersecting socioecological systems (i.e.,

poverty traps, high-stress workplaces, combat, etc), an

individual’s perceived distress (i.e., stress overload, lack of

control, etc) causes many of the body’s key allostatic sys-

tems—a complex, nonlinear network of interactive and

adaptive mediators (e.g., blood pressure, cardiovascular,

metabolic, etc)—to shift into a state of relative disequili-

brium to maintain wellbeing [6]. Often times, particularly

when distress is short-term-intense or chronic, this sus-

tained disequilibrium can lead to dysregulation, which

can cause significant dysfunction/damage to these allo-

static systems; which, in turn, can lead to significant, neg-

ative health outcomes (e.g., heart disease, cancer,

depression, alcoholism, PTSD) [1–7].

Given its theoretical complexity, AL has shown great

potential as an interdisciplinary tool for assessing cumula-

tive health risk [7–11]. For example, as Gallo et al. state,

‘‘In contrast to the common practice of examining risk

factors within a single physiological system, the allostatic

load framework provides an integrative approach that may

better characterize the cumulative impact of dynamic and

nonlinear influences across major biological regulatory

systems.’’[12] In this way, AL links to a variety of fields

(from medical sociology and medicine to human biology

and public health) focused on the negative impact that

stress events have on health and wellbeing; particularly

across the life-course and across different antecedent soci-

oecological factors such as gender, age, ethnicity, mental

status, psychological trauma, residence, occupation and—

a current major focus—health disparities [8–11,13–19]. For

example, regarding health disparities, Beckie [19] states,

‘‘The theoretical constructs of allostasis and allostatic load

(AL) have contributed to our understanding of how con-

stantly changing social and environmental factors impact

physiological functioning and shape health and aging dis-

parities, particularly along socioeconomic, gendered,

racial, and ethnic lines’’ (p. 311).

The Challenge of Measuring AL
Given its potential as an interdisciplinary index of perso-

nal and public health, researchers have developed a variety

of ways to measure AL [7,17–19]. The challenge, however, is

built into the very nature of what makes AL unique: it is a

complex, dynamic, evolving network of intersecting allo-

static systems, which are situated within a wider web of

intersecting socioecological systems [7,17–21]. In other

words, the study of AL is a complex systems problem.

When complexity scientists say AL is a complex system

problem, they mean that, like many personal and public

health issue, AL displays the key characteristics associated

with a complex system—that is, it is nonlinear, emergent,

self-organizing, multidimensional, multilevel, multisys-

tems, network-based, etc [14,22–30]. From a measurement

perspective, these challenges strains the limitations of

conventional statistics. In the case of AL, such challenges

amount to four key issues:

First, given its multisystem network of complexity,

there is the issue of what biomarker panel best operation-

alizes AL; and, related, how this panel is best theoretically

combined to represent the underlying factor analytic

structure of AL [6,7,10,18–21]. As Gallo et al. [12] point

out, while AL ‘‘is typically operationalized as a composite

of biological markers representing multiple systems, espe-

cially the neuroendocrine, cardiovascular, metabolic, and

immune systems,’’ existing methods struggle to model

such a level of causal complexity (p. 479).

Second, per the conventions of a biomedical approach to

statistics, AL is typically measured as a composite index

[7,18–21]. In addition to the restricted predictive value of

this approach [7,18–21], dichotomizing biomarkers to

achieve a composite score (as is often done) dilutes personal

and group differences and variability. Also, any sort of ‘‘sum-

ming’’ of the biomarkers in a study potentially gives equal

weight to all markers. And, finally, reducing AL to a single

composite score negates the ability to evaluate complex

causal patterns among the biomarkers [7,9–11,18–21]—

which takes us back to the first challenge and also leads to

the next challenge.

Third, there is the issue of how AL is differentially

expressed in groups. As Gruenewald et al. [20] have shown

empirically, there are multiple causal pathways for AL;

expressed in the form of multiple AL profiles. Further-

more, these profile differences will vary as a function of

(1) differences in antecedent socioecological factors and

(2) differences in antecedent bioallostatic makeup. These

insights [12], which we seek to advance, have significant

implication for clinical care, allowing for the development

of multiple treatment approaches—at the personal and

public health levels—based on differences in AL profiles

and their corresponding differential health outcomes.

Fourth, there is the issue of time. The majority of studies,

to date, are cross–sectional. More longitudinal research is

therefore necessary, examining AL for different subpopula-

tions and cohorts as they evolve across time/space [7,18–21].

Purpose of Current Study
Hence we come to the purpose of the current study:

we seek to advance the measurement of AL by modeling it
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as a complex system, situated within a network of larger

socioecological systems, based on the methodological

tools of case-based computational modeling (CBM). More

specifically, we seek to answer the following three ques-

tions: Is AL, as a complex system, comprised of multiple

causal pathways, such that different types of AL clinical

profiles exist? Second, do these profiles link to subsequent

health risk typologies? And, third, do these profiles/out-

comes manifest themselves differently within the larger

socioecological systems in which AL is situated? These are

the three research foci of the current study. To address

them, we turned to the tools of CBM.

Case-Based Computational Modeling
As already alluded to above, the complexity sciences

constitute an across-the-academy field of study, focused

on rethinking scientific inquiry from a complex systems

perspective [22–24]. Much of this rethinking is focused on

method, particularly computational modeling, which uses

high-powered computers and brute-force algorithms to

arrive at ‘‘approximate’’ models for highly complex data

[22–25]. Examples include genetic algorithms, agent-based

modeling, networks, and more recently, CBM [23,25–30].

For those new to CBM, several quick comments are

necessary. CBM combines case-comparative method with

the various theoretical and methodological tools of the

computational and complexity sciences to advance the

modeling of complex (social and health) systems; which it

does by treating complex systems as sets of cases (i.e.,

k-dimensional vectors/profiles) [27–30]. Such an approach

is a useful addition to current method, as it helps health

and medical researchers ask different types of questions,

based on cases [23,25–28]. In terms of the current study,

for example, it allowed us to ask our three research ques-

tion—which brings us to the CBM platform used for the

current study, the SACS Toolkit [27–30].

The SACS Toolkit—which the second author of the cur-

rent study and colleagues have developed [27–30]—

focuses on cases, specifically how they aggregate and clus-

ter into similar groups in highly complex, multidimen-

sional big data. (For a complete overview, see Refs. 27–30.)

In terms of the current study and our three research foci,

the strength of the SACS Toolkit is its ability to: (1) identify

subgroup differences (profiles) among highly complex

data; (2) examine how these profiles link to different

typologies or health risk outcomes; and (3) explore how

these AL clinical profiles/health risk outcomes emerge

within the larger socioecological systems in which they

are situated. Our study proceeded as follows:

Step 1: First, we used the SACS Toolkit to develop a

multisystem factor-analytic measure of AL; which, we

argue, makes the following advances. It allows re-

searchers to: (a) bypass simplistic indices of AL; (b)

suggest a preferred approach to constructing a bio-

marker panel; (c) engage in a theoretical exploration

of different causal pathways among key AL subsys-

tems; and (d) preserve the multisystem complexity of

AL while (simultaneously) decomposing it onto a

meaningful set of factors. In terms of establishing a

preferred approach to constructing a biomarker panel,

we followed the theoretical framework of McEwen

et al. [1–5,7] and Seeman et al. [8–11] focusing on

twenty key components of major allostatic systems

(see METHODS).

As a final point, our approach, while novel, builds

on previous research [7,21,31], specifically a prelimi-

nary factor analysis conducted by the first author of

this paper [21]; which Seeman et al. [8] have already

successfully used to examine health disparities based

on social status, suggesting our measure’s utility. In

terms of the current study, we advance the first

authors preliminary factor analysis by (a) studying a

larger sample, (b) situating our results within a com-

plex multisystems framework; and (c) using our results

to construct complex AL clinical profiles—which takes

us to the next step.

Step 2: Second, we used the SACS Toolkit to con-

struct a catalog of AL clinical profiles (see Table 3 and

METHODS for details), based on subject scores from

our factor analytic solution (See Table 1). In terms of

advancement, this clinical catalog allows for a more

complex and nuanced understanding of AL, based on

the idea that AL is comprised of multiple clinical pro-

files, each demonstrating a unique set of causal path-

ways among the underlying latent seven-factor

structure of AL. Such a view can not only advance how

AL manifests itself among different populations, but it

also can advance AL as a form of personalized medi-

cine, based on subgroup variations in antecedent bio-

allostatic makeup and socioecological factors.

Step 3: Third, we used CBM to create a health risk

outcomes typology for each AL profile. For our study,

we hypothesize that our AL profiles, once identified,

would reflect group differences in overall biological

health or conversely dysregulation. In terms of

advancement, such a health risk typology can be used

to assess and potentially predict future health risk out-

comes based on the current AL of a patient or group

of people, allowing for improved personalized and

more focused prevention and treatment.

Step 4: Finally, we examined how the complexities

of AL link to its larger web of antecedent socioecologi-

cal systems—which we did by exploring (post hoc)

how gender correlates with our results. In terms of

advancement, our post hoc analysis is potentially use-

ful, as it allows researchers and clinicians to see how
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the complexities of AL link to differences in the short-

or long-term health of different groups.

Three Caveats
Before we proceed, however, three caveats are needed.

First, the exploratory nature of our study needs to be

acknowledged: it seeks to push the current methodological

paradigm. Second, given the limitations of any one study,

we did not address all five ‘‘measurement’’ issues above.

For example, while more longitudinal research is neces-

sary, our study is based on a cross-sectional, middle-aged

sample (Mean Age 5 55.0; SD 5 11.8; see METHODS).

Third, while there may be merit in exploring the factor

analytic structure of AL based on sex or ethnicity, current

research suggests otherwise. As Seeman et al. [10] con-

cluded: ‘‘We sought to test a hypothesized metafactor

model of AL composed of a number of biological system

factors, and to investigate model invariance across sex

and ethnicity. . .. A ‘‘metafactor’’ model of AL as an aggre-

gate measure of six underlying latent biological subfactors

was found to fit the data. . .. There was little evidence of

model variance across sex and/or ethnicity’’ (p. 463).

METHOD
Subjects

For this study, we utilized archival data from the Mid-

life Development in the United States (MIDUS) study, a

national survey by the MacArthur Midlife Research Net-

work in 1994/1995, which included data from over 7000

Americans aged 25–74 [32,33]. The purpose of the survey

was broad, investigating the role of behavioral, psychologi-

cal, and social variables on a variety of health outcome

measures. In 2002, the University of Wisconsin-Madison

carried out a longitudinal follow-up of the original MIDUS

TABLE 1

Allostatic Load Seven Factor Structure Solution

Factors/Componentsa

Biomarkers
Blood

Pressure
Metabolic
Syndrome Cholesterol

Pro-Inflammatory
Elements

Stress
Hormones

Blood
Sugar

Stress
Antagonists

Systolic BPb 0.880 0.158 0.060 0.132 0.054 0.130 20.106
Diastolic BPb 0.883 0.181 0.120 20.052 0.141 0.020 0.220
Waist to hip ratio 0.305 0.700 20.090 0.113 0.150 0.308 0.294
HDLc 20.096 20.829 0.103 20.084 20.191 20.129 20.122
Insulin 0.082 0.677 0.030 0.379 0.025 0.411 20.007
Triglycerides 0.164 0.786 0.297 0.113 0.039 0.235 20.093
Total cholesterol 0.099 20.005 0.980 0.021 20.033 0.011 20.011
LDLd 0.098 0.095 0.935 0.021 0.040 20.077 0.093
IL6e 0.030 0.271 20.141 0.786 0.000 0.169 20.257
Fibrinogen 0.001 20.009 0.092 0.804 20.037 0.148 20.096
C Reactive proteins 0.071 0.249 0.100 0.816 0.033 0.185 20.259
Cortisol 0.094 20.046 20.008 20.119 0.613 20.093 0.264
Norepinephrine 0.124 0.237 0.006 0.124 0.889 0.075 20.001
Epinephrine 0.112 0.077 20.028 20.085 0.855 20.016 0.178
Dopamine 0.044 0.190 0.000 0.020 0.888 20.006 0.124
Hemoglobin A1c 0.036 0.208 20.059 0.238 20.018 0.887 20.163
Glucose 0.115 0.355 20.015 0.130 0.006 0.895 20.015
DHEASf 20.005 0.127 0.110 20.098 0.226 20.005 0.729
Peak flow 0.208 0.307 20.089 20.286 0.111 20.004 0.629
IGF-1g 0.031 20.081 0.020 20.190 0.026 20.162 0.719

aThe allostatic load factor structure was obtained using a principal components analysis with promax solution. Biomarkers were retained for the factor

on which they loaded the highest, with a minimum loading of .613.
bBlood pressure.
cHigh-density lipoprotein.
dLow-density lipoprotein.
eInterleukin 6.
fDehydroepiandrosterone sulfate.
gInsulin-like growth factor.

The bold values indicate the most important factor loadings for each of the factors.

4 C O M P L E X I T Y Q 2015 Wiley Periodicals, Inc.
DOI 10.1002/cplx



respondents. This second initiative (MIDUS II) had five

research foci, one of which included comprehensive bio-

marker assessments obtained from a subsample of MIDUS

respondents [32,33].

For the current study, the number of subjects with

valid biomarker data used was N 5 1151. Missing data

from this total were removed pairwise rather than using a

substitution. A total of 4.8% of data were missing when

calculating the final clusters for our AL catalog. In terms

of overall demographics, our sample was 57% female

(N 5 656) with a mean age of 55.0 (SD 5 11.8). Also, our

sample was representative of the original MIDUS sample.

As a final point, because we did not construct an index,

we did not explore medication data. However, for those

interested in how medication data was used to augment

our initial factor solution, see the study Seeman et al. [8].

AL Biomarker Panel
We used 20 MIDUS II biomarkers—nearly double the

average used in 58 studies reviewed by Juster et al. [6]. We

also made sure that all 20 biomarkers were utilized in at

least two published studies reviewed by Juster et al. [6]. In

terms of theory, we organized our biomarkers into five

physiological systems. (1) Biomarkers from the neuroendo-

crine system included (a) three catecholamines (norepi-

nephrine, epinephrine, and dopamine); (b) the androgen

dehydroepiandrosterone sulfate (DHEA-S); and (c) the glu-

cocorticoid cortisol—all of which are involved in the

body’s stress reaction. (2) The cardiovascular/respiratory

system biomarkers were systolic and diastolic blood pres-

sure and peak expiratory flow (which is the maximum

speed of expiration and an indicator of airflow through

the bronchi). (3) The metabolic system biomarkers are

well-known indicators of cardiovascular health. This study

included total cholesterol, high-density lipoprotein choles-

terol, low-density lipoprotein cholesterol, triglycerides,

hemoglobin Alc (HbAlc), glucose, and insulin. (4) We also

included biomarkers from the immune system, including

(a) C-reactive protein (CRP), an acute phase reaction pro-

tein that promotes inflammation; (b) interleukin-6 (IL-6),

a mediator of the acute phase response that acts as a pro-

inflammatory element; (c) the anti-inflammatory cytokine,

fibrinogen, which functions as a blood clotting factor that

promotes coagulation but increases risk of thrombosis

when excessive, and (d) the insulin-like growth factor

(IGF-1), a protein that mediates the effects of growth hor-

mone and inhibits cellular apoptosis. (5) Finally, a bio-

marker of anthropometric status, which measures body

habitus, waist-to-hip ratio was used.

Health Risk Outcomes Measures
For our study, we used a total of 23 MIDUS-II self-

report health outcomes: heart disease, high blood pres-

sure, circulation problems, blood clots, heart murmur,

TIA/stroke, anemia, cholesterol problems, diabetes,

asthma, emphysema/COPD, tuberculosis, positive TB skin

test, thyroid disease, peptic ulcers, cancer, colon polyps,

arthritis, glaucoma, liver cirrhosis, alcoholism, depression,

and blood transfusion before 1993. (For details, see Refs.

32, 33).

Statistical/Computational Analyses
As discussed in the introduction, to model AL as a

complex system, we employed a CBM approach [23,25–30]

specifically, the SACS Toolkit [27–30]. We did so, given the

case-based focus this approach takes, as it allowed us to

address our three research question: (1) the possibility of

multiple AL clinical profiles, (2) the possibility of concur-

rent and different AL health risk typologies, and (3) the

subsequent possible differences in how these multiple

profiles/health risks are manifested in the larger socio-

ecological systems in which AL is situated.

While the SACS Toolkit draws upon a wide variety of

computational and statistical techniques, for the current

study, we used four: the Kohonen self-organizing map

(SOM), k-means cluster analysis, principle components

analysis (PCA), and logistic regression. A brief overview of

how we employed PCA, k-means and the SOM is provided

here:

Step 1: Factor Analytic Solution: We began with PCA

[34] in order to: (1) identify the major and multiple path-

ways/relationships among our twenty biomarkers, based

on their factor loadings; and (2) name the factors in the

PCA solution. (For those unfamiliar with PCA, see Table 1

for the factors, their names, and the loadings for each of

the 20 biomarkers on each factor.) Also, prior to PCA, we

used a parallel analysis to identify the appropriate number

of factors to be extracted [35]. Also, given that our factors

constitute highly complex and interdependent AL biologi-

cal systems, we did not assume that they would be inde-

pendent. Instead, given our complex systems approach,

we treated their causal pathways as complex, multiple,

self-organizing, emergent, and nonlinear. As such, we

used a promax (oblique) rotation.

The resulting factor structure was interpreted by

requiring a loading of .60 to retain each biomarker for

each factor identified. All biomarkers were retained on the

factor for which they loaded the highest. No item loaded

over 0.60 on more than one factor and all items loaded on

at least one factor. Factors were named based on the allo-

static systems the biomarkers represented—note, an allo-

static system could be represented by more than one

factor; or, conversely, a factor could represent more than

one system.

Finally, after the PCA was completed, all biomarkers

that loaded saliently on a factor were used to form stand-

ardized scores. This n-dimensional vector profile for each
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case in the database was then used, in turn, to complete

Step 2.

Step 2: Constructing our AL Catalog: With our factors

identified, we sought to assemble a catalog of AL profiles.

To do so, we employed the SOM and k-means cluster

analysis [36–39] In terms of our usage of these techniques,

we provide the following details:

K-means was used first because it requires that the

number of clusters be identified ahead of time, based

largely on some rationale (usually theoretical or previous

empirical research), even if tentative or conjectural. Fol-

lowing convention, we ran our k-means with normalized

data (as mentioned at the end of Step 1), using a Euclidian

measure of distance, with the convergence criterion set to

zero. After several runs, all outliers and cases with only

partial data were removed. An ANOVA table with unstan-

dardized F statistics was also generated to determine the

relative impact each component in the AL profile had on

the final cluster solution.

To construct our AL profiles, we evaluated the cent-

roids (clusters) shown in Table 2. Also, to help determine

the crispness of the clusters, box plots were examined for

outliers. The distance measures for all cases relative to

their clusters were also normalized as z-scores and the

standard deviation for each cluster computed.

Next, the SOM was run. Because the SOM is unsuper-

vised, if it arrives at a solution similar to the k-means it

provides effective corroboration. Analyses were conducted

using the SOM Toolbox, a freeware package for MATLAB

[37] The SOM graphs its cluster solution onto a variety of

three-dimensional maps. For the current study, as shown

in Figure 1, we used the u-matrix and components map.

On the u-matrix, cases most like one another are graphi-

cally positioned as nearby neighbors, with the most unlike

cases placed furthest apart. The u-matrix and components

map are also topographical: valleys (darker colored) areas

are more similar in AL profile; while hilly, brighter colored

areas are more distinct. The component maps visualize

how each of the factors from our factor solution contrib-

uted to the making of a profile and to the positioning of

cases on the u-matrix.

RESULTS AND DISCUSSION
To advance the measurement of AL and, in turn, its

theoretical understanding as a complex system, we did the

following: (1) used PCA to determine the underlying factor

analytic structure of AL; (2) used the SOM and k-means to

construct a catalog of AL clinical profiles; (3) regressed the

resulting AL clinical profiles on a series of 23 health out-

comes to construct a health-risk typology for AL; and (4)

situated our results in the wider network of socioecologi-

cal systems by exploring, post hoc, differences among our

results as a function of gender. Our results and discussion

are as follows:

Factor Solution
As shown in Table 1, our PCA arrived at a seven-factor

solution, accounting for 72.3% of the total variance. Fur-

thermore, despite the complex causal pathways among

the 20 biomarkers, the factor loadings were, overall, very

clear. The only exceptions were: (a) Waist-to-Hip on Blood

Pressure, Blood Sugar and Stress Antagonists (key stress

buffers); (b) Insulin on Pro-Inflammatory Elements and

Blood Sugar; (c) Triglycerides on Blood Pressure; (d)

Glucose on Metabolic Syndrome; and (e) Peak Flow on

Metabolic Syndrome. Still, these additional loading were

only 0.411 or lower. Based on the factor loadings, the

seven factors were named as follows: (1) Blood Pressure,

(2) Metabolic Syndrome, (3) Cholesterol, (4) Pro-

Inflammatory Elements, (5) Stress Hormones, (6) Blood

Sugar, and (7) Stress Antagonists—by this last term we

mean a set of biomarkers which, when low, indicate a per-

son’s struggle to buffer herself/himself against stress.

Overall, then, our results support the usage of factor

analysis as a robust empirical and biologically plausible

solution for the complex latent structure of AL. More spe-

cifically, our results suggest that our 20 biomarker panel—

given its theoretical grounding—may, indeed, serve as a

preferred approach to constructing a biomarker panel.

Finally, our PCA solution provides initial support for

measuring AL a complex multi-system biological con-

struct, rather than as a simple composite index.

AL Clinical Profiles
As shown in Table 2 and Figure 1, the SOM and

k-means settled on a catalog of nine AL clinical profiles,

which we named as follows.

1. Low Cholesterol: The key feature of this clinical

profile is its very low centroid score on Cholesterol

(21.12); and, in turn, Stress Hormones (20.79). The

SOM supported these results. However, looking at

Map B, the SOM grouped the Low Cholesterol (for-

est green) cases (Profile 2) into three possible sub-

groups. Looking at Map C and Map B together, the

top left subgroup has the lowest Cholesterol scores,

while the other two subgroups have the lowest

Stress Hormones scores (Map C).

2. Healthy: The centroid scores for this profile were

very low on Metabolic Syndrome (21.08), Pro-

Inflammatory Elements (21.19), and Blood Pressure

(21.10). The SOM supported these results: looking

at Map B, the SOM positioned the Healthy cases

(Profile 2) at the top, colored in light yellow. Look-

ing at this same area for each of the seven factors

in Map C (components map), one finds low to very
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low scores (dark blue) on Blood Pressure, Metabolic

Syndrome, Pro-Inflammatory Elements, and Blood

Sugar.

3. High Blood Pressure: The key feature of this profile is a

high score on Blood Pressure (0.94); but, conversely, a

low score on Pro-Inflammatory Elements (20.71). In

addition, looking at Map B, the SOM grouped High

Blood Pressure (light blue) into two possible subgroups

(one large, one small) with cases on the left having

both higher Cholesterol (Map C) and Stress Antago-

nists (stress buffers) (Map C).

4. Low Stress Hormones: This profile (the largest,

N 5 169) had the lowest score on Stress Hormones

(20.92) and a High Cholesterol Score (0.73). Look-

ing at Map B, the SOM supported these results,

placing the majority of cases in Profile 4 toward

the lower center (purple), where some of the high-

est Cholesterol and lowest Stress Hormones scores

are found (Map C). But, the SOM also identified a

possible (albeit small) subset of cases toward the

upper right of Map B, which is lower on Stress

Antagonists (stress buffers).

FIGURE 1

U-Matrix and Components Maps for Nine Allostatic Load Profiles: Map A and Map B are graphic representations of the cluster solution arrived at by
the Self-Organizing Map (SOM) Neural Net, referred to as the U-Matrix. In terms of the information, they provide, Map A is a three-dimensional (topo-
graphical) u-matrix: for it, the SOM adds hexagons to the original 15X11 map to allow for visual inspection of the degree of similarity among neighbor-
ing map units; the dark blue areas indicate neighborhoods of cases that are highly similar; in turn, bright yellow and red areas, as in the lower right
comer of the map, indicate highly defined cluster boundaries. Map B is a two-dimensional version of Map A that allows for visual inspection of how
the SOM clustered the individual cases. Cases on this version of the u-matrix (as well as Map A) were labeled according to their k-means cluster
membership (The nine cluster solution shown in Table 2) to see if the SOM would arrive at a similar solution. Map C is a graphic representation of the
relative influence that the seven factors (shown in Table 1) had on the SOM cluster solution. The SOM generates a mini-map for the seven factors,
each of which can be overlaid across maps A and B. Each of these mini-maps can then be inspected visually to examine what its rates are across the
different neighborhoods (clusters of cases). Dark blue areas indicate the lowest rates for a factor; and the bright red areas indicate the highest rates
for a factor. For example, looking at the mini-map for Factor 6 (Blood Sugar), its rates are extremely low across most of the map, except for the lower
right comer, which is where (looking at Map A and Map B) the SOM placed Cluster 6.
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5. Metabolic Syndrome: This profile has the highest score

on Metabolic Syndrome (1.22) and high scores on Cho-

lesterol (0.73) and Pro-Inflammatory Elements (0.99).

The SOM supported these results (Map C), placing

Metabolic Syndrome cases (Profile 5) at the bottom

center-left (melon) of Map B. The SOM also identified

a possible small subset of cases in the lower right, very

high on Metabolic Syndrome and Pro-Inflammatory

Elements, but not as high on Cholesterol.

6. High Blood Sugar: This profile—the smallest

(N 5 35)—has a high Metabolic Syndrome score and

the Highest Blood Sugar Score (3.71); placing the

centroid scores for Profile 6 three standard devia-

tions above the mean. The SOM strongly supports

these results (Map C), placing Profile 6 (purple) in

the lower right corner on Map B.

7. Low Stress Antagonists (low stress buffers): This pro-

file has the lowest score on key stress buffers

(Stress Antagonists 5 21.70); and also low scores on

Metabolic Syndrome (20.74) and Stress Hormones

(0.99). Scoring low on the biomarkers for Stress

Antagonists is associated with poor health out-

comes. For more, see our discussion of this profile

in the Health Risk Outcomes section below. The

SOM supported these results (See Map C), placing

these cases (Profile 7) along the upper right (pink)

of Map B. However, the SOM spreads this profile

out a bit, overlapping it with Low Stress Hormones,

possibly due to their mutual low scores on Meta-

bolic Syndrome and mild scores on Stress Antago-

nists (stress buffers).

8. High Stress Hormones: Directly opposite of the Low

Stress Hormones type, this profile (the second larg-

est, N 5 146) has the highest score on Stress Hor-

mones (1.03) and one of the lowest scores on

Cholesterol (20.69). Looking at Map B, however,

the SOM did not entirely support these results,

breaking Profile 8 (mocha) into two possible

groups. The upper-left profile is similar to Table 2;

however, the bottom-left profile differs, with high

scores on Pro-Inflammatory Elements, Metabolic,

and Blood Pressure.

9. High Pro-Inflammatory Elements: This profile had

the highest centroid score on Pro-Inflammatory

Elements (1.08); a high score on Metabolic Syn-

drome (.73); and, it is important to note, a low

score on Stress Antagonists (stress buffers) (20.73)

and also cholesterol (20.82). The SOM supports

these results (grey), although Pro-Inflammatory Ele-

ments, Metabolic, and Cholesterol do go down

toward the upper-right.

As these results suggest, a case-based modeling

approach further supports researching AL as a complex

system. Furthermore, these results support the idea that

AL is comprised of multiple clinical profiles, each demon-

strating a relatively unique set of causal pathways among

the underlying latent seven-factor structure of AL. Finally,

if such a diversity of AL clinical profiles and their respec-

tive differences in causal structure exist, our results sug-

gest that a more personalized medicine approach may be

warranted where AL is treated as a form of differential

diagnosis—both for individuals and groups.

Typology of Health Risk Outcomes
As shown in Table 3, using logistic regression, we arrived

at a typology of health risk outcomes for each of our AL

clinical profiles. To help readers make sense of these results,

we created Figure 2, which visually displays the differences

between observed and expected frequencies for each self-

reported medical condition. In Figure 2, the radii represent

all 23 medical conditions used in our study. The profiles

are circumscribed around these 23 radii based on the

results from Table 3. The resulting health risk outcomes

profile is shown in red. Scores higher than 0 (the green

circle) indicate a greater observed value than expected,

whereas scores below 0 indicate a smaller observed value

than expected. The most noteworthy scores for each profile

are also labeled in red. Our results are as follows:

1. Healthy Outcomes: To begin, there were three pro-

files with healthy to moderately healthy outcomes. Of the

three, the most obvious was Healthy; which, in contrast to

the other eight profiles, reported, overall, lower health risk

outcomes, including exceptionally lower rates of circula-

tion problems, cholesterol and arthritis; as well as low

rates of heart disease, diabetes, TIA/stroke, heart murmur

and blood clots. Still, this profile reported slightly greater

than expected (or equivalent) rates of cancer, anemia,

emphysema, tuberculosis, thyroid disease, and glaucoma.

Perhaps most important, when viewed as an emergent

complex system, the Healthy profile and its associated risk

typology illustrated something new: while many of its bio-

markers have long been documented to be risk factors for

cardiovascular dysfunction, this is the first time, to our

knowledge, they have been shown to group together when

evaluating the AL outcomes of stress—illustrating, in this

case, a positive outcome. For example, less than 1% of the

N 5 138 cases in this profile reported heart disease.

The second healthy profile is Low Cholesterol; which,

overall, had a health risk typology close to expected values

on most markers. It did, however, have slightly higher

rates on a few outcomes, such as heart disease and alco-

holism. And, it certainly did not have the markedly low

rates found in the Healthy profile.

The least obvious healthy profile was High Blood Pres-

sure; which underreported on key stress-related disorders,

including high blood pressure (49/56) and cholesterol (38/
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66). These findings suggest that blood pressure, alone,

may not initiate the cascade of disorders associated with

more pivotal profiles, like Pro-Inflammatory Elements.

More likely, however, these results suggest that patients in

this profile are, by the time of self-report, receiving treat-

ment for their high blood pressure.

2. Unhealthy Outcomes: In contrast to the health pro-

files are the other six; which were, to varying degrees,

associated with different patterns of poor health out-

comes. As a first example, when analyzing Metabolic Syn-

drome, we found expected high rates for high cholesterol

(83/62) and high blood pressure (61/52). But, we also

found lower than expected rate for heart disease (7/17).

Another example is High Pro-Inflammatory Elements,

which reported a high rate of heart disease (27/12), high

blood pressure (61/38), circulation problems (20/10), dia-

betes (37/12), cholesterol (68/45), cancer (23/15), and

arthritis (56/42). This profile also appears to be the most

impacted by AL, with consistent higher-than-expected

reporting of cardiovascular and metabolic disorders. It

may be relevant that this profile is also low on cholesterol

and Stress Antagonists (those key stress buffers). The

strong association between high levels of Pro-

Inflammatory Elements (IL-6, fibrinogen, CRP) and cardio-

vascular problems is, however, expected [40–42]. Also

expected is this profile’s association with diabetes [43–45].

Given that Low Stress Antagonists (stress buffers) indi-

cate a person’s struggle to defend against stress, this AL

clinical profile showed a consistent pattern of higher-

than-expected reporting on many stress-related health

outcomes. A significant number of cases in this profile

also reported high rates of heart disease (24/13), high

blood pressure (51/39), thyroid (22/14), blood transfusions

(19/11), and arthritis (65/45) – which, when viewed in

total, raises suspicion about the role that Stress Antago-

nists (stress buffers) play in this profile.

The typology for this profile is also significant because

(like the Healthy profile) it points to the utility of a case-

based approach: our exploratory results suggest etiological

clues for patterns not entirely expected. As a restatement

of what we found, the key biomarkers loading on this pro-

file were IGF-1, DHEA-S, and peak flow. In turn, rates for

heart disease, high blood pressure, thyroid disease, blood

transfusions, and arthritis were well-above expected out-

comes; however, diabetes was less than expected. In terms

of interpreting these results, DHEAS (the most common

adrenal steroid in the body) declines dramatically with

age. However, while the exact progression of DHEAS dur-

ing stress is poorly documented, it is elevated by stress in

the short-term. Furthermore, higher levels of DHEAS dur-

ing stress are associated with less stress at a later time;

although a more common explanation is that the ratio of

DHEAS to cortisol is crucial in controlling stress and may

provide beneficial behavioral and neurotrophic effects [7].
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Its effect may be similar in the long-term. Bremner et al.

[46] reported adult women with a childhood history of

sexual abuse and current PTSD had higher levels of

DHEAS recorded across a 24-h period than control women

and women with abuse but no PTSD.

The findings for Low Stress Hormones and its counter-

part High Stress Hormones also support the current litera-

ture, which can be summarized as follows: while the short

term effects of stress hormones—which, in the current

study, includes catecholamine and the HPA steroid corti-

sol—are positive, it appears that long-term circulating

effects are negative in heart disease [45]. The fact that Low

Stress Hormone also reported less-than-expected heart dis-

ease, while High Stress Hormones reported higher-than-

expected heart disease and high blood pressure is also

consistent with the literature [45]. However, while Low

FIGURE 2

Clinical health risk outcomes for nine allostatic load profiles. This figure displays the differences between observed and expected frequencies for each
self-reported medical condition. Each of the radii represents a self-reported medical condition, labeled at the top of their respective radius. The case
clusters are circumscribed around the 23 points of each circle based on the average frequency on a particular self-reported medical condition. The
resulting profile (which constitutes each Cluster’s health risk profile) is in red. Score higher than 0 (the green circle) indicate a greater observed value
than expected, whereas scores below 0 indicate a smaller than observed value than expected. For those scores higher than 20, the corresponding
medical condition is labeled in red. The three healthy to marginally healthy profiles are at the top, outlined in orange.
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Stress Hormone reported high rates of anemia (36/25),

peptic ulcers (16/9), and depression (50/39), it also

reported less-than-expected TIA/Stroke, diabetes, and cir-

culation problems—which may suggest broader effects.

Finally, there was High Blood Sugar. The most impor-

tant outcome for this profile, which was expected, was its

very high rates of diabetes (28/4). Everything else, other-

wise, was within the normal, expected range.

Post Hoc Results: AL and Gender
Ultimately, if one is to understand the full complexity

of AL, it is necessary to explore (in-depth) how our catalog

of clinical profiles/health risk typologies link to the larger

socioecological systems in which AL is situated across

time/space. While such a focus is the goal of subsequent

research, we decided to initially explore this issue by

examining, post hoc, the influence of gender on our

results.

Overall, we found that women were overrepresented on

Low Stress Antagonists (95.4%), Healthy (81.9%), and Low

Stress Hormones (66.3%). In contrast, men were overrepre-

sented on High Blood Pressure (61.2%), Metabolic Syn-

drome (63.2%), High Stress Hormones (66.4%), and High

Blood Sugar (57.1%). In contrast, however, the ‘‘percentage

female’’ for Low Cholesterol (56.3%) and High Pro-

Inflammatory Elements (57.7%) was similar to our overall

sample (57% female).

The fact that men were overrepresented on High Stress

Hormones, as well as the profiles characterized by the

downstream effects of these hormones, namely High Blood

Pressure and Metabolic Syndrome, leads us to question if

men are more susceptible to the negative effects of SAM

and HPA hormones. Furthermore, women are overrepre-

sented on the profiles comprising factors consistent with

allostasis, namely Healthy and Low Stress Hormone, and

yet overrepresent the Low Stress Antagonists (stress buffers)

profile.

The post hoc results for Low Stress Antagonists (stress

buffers) suggest a possible unique gender-based stress

response. The key biomarkers on this profile are peak

flow, DHEAS, and IGF-1. While DHEAS is the most com-

mon steroid in both men and women, not only having a

mild androgenicity effect, it is also the precursor from

which all other steroids are metabolized. It drops in a

strictly linear fashion with age in both men and women,

with women having lower levels than men throughout

the lifespan [47–51]. However, this pattern of decline is

complicated in old age by the emergence of subgroups

that show an increase in levels (after correcting for

regression to the mean) for 15% of women and 5% of

men [52]. The cause of this unexpected finding is

unknown and has led previous studies to conclude

that ‘‘unknown fundamental gender differences’’ in adre-

nal androgen production and excretion might be the

cause [53].

In terms of the current study, however, while we can-

not directly tie our post hoc results to the gender differen-

ces described in the current literature, our results suggest

that very low levels of DHEAS may likewise reflect some

‘‘unknown fundamental gender differences’’ in androgen

production, which is seemingly associated with the emer-

gence of stress-related disorders. IGF-1 is secreted by the

liver and is important for both the regulation of normal

physiology and a number of pathological conditions, most

notably cancer. While its role in stress is poorly under-

stood, it is reported to be lower in patients suffering mul-

tiple traumas [54]; and few would argue that it does not

play a relevant role in stress. Reviews of the studies on

DHEA supplementation during the 1990s (and even more

recently) find reports of a rise in IGF-1 subsequent to

DHEA administration [55]. Interestingly, IGF-1 is also

reported to rise in association with cortisol. In apparent

contradiction, however, several epidemiological studies

have found that low IGF-1 is a risk factor for metabolic

syndrome. It is difficult to know what biological stress-

related functions are driving the high level of self-reported

medical difficulties. Also, it is not clear how knowing they

are almost exclusively women is informative, yet this pro-

file may well wave a red flag for further research into this

dimension of AL, a reasonable outcome for this third part

of our study.

Limitations of Current Study
Given the exploratory nature of the current study, sev-

eral limitations (which we also discussed in the introduc-

tion and methods) are important to highlight. First, the

health risk outcomes for our study were self-report. Sec-

ond, we did not use medication data. Third, our study was

cross-sectional. Finally, while we examined gender post

hoc, future research needs to explore in-depth how the

catalog of AL clinical profiles and their corresponding

health risk typology link to the larger socioecological sys-

tems in which AL is situated across time/space. It is there-

fore necessary for future research to confirm our results

with non-self-report and medication data, as well as

employ a longitudinal or cohort design, particularly in

order to examine how our factor structure, AL clinical pro-

files, and health risk outcomes typology change as a func-

tion of time or key antecedent socioecological factors,

including medical treatment, health behaviors, change in

residence, and so forth.

CONCLUSIONS
Over the last several decades, the complexity sciences

have sought to demonstrate the utility of thinking about

health problems (particularly health disparities) in holistic,
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complex systems terms [22–24]. AL constitutes one such

advance [1–7,18,19]. However, the measurement of this

concept, as a complex system, has yet to be fully devel-

oped, given the limitations of the statistical methods cur-

rently used in the field, which are largely conventional in

nature, relying on a reductionist linear model approach

[7,19].

In response, the current study sought to make several

key advances, in order to demonstrate, in exploratory

fashion, the utility of modeling and measuring AL as a

complex system. More specifically, we sought to demon-

strate that a CBM approach could be used to: (1) deter-

mine the underlying factor analytic structure of AL and

construct a catalog of corresponding clinical profiles; (2)

regress these AL clinical profiles on a series of health out-

comes to construct a health-risk typology for AL; and (3)

situate these results in the wider network of socioecologi-

cal systems by exploring, post hoc, differences among our

results as a function of gender. While exploratory and ten-

tative, our results, overall, supported our efforts, suggest-

ing that the complexities of AL can be more effectively

modeled and measured.
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