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* Within the world(s) of computational modelling and interdisciplinary
mixed methods, case-based complexity constitutes one of the major
methodologies for modelling complex social systems or, more generally,

social complexity.
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Basic Tenets

The case and its trajectory across time/space are the focus of study, not the individual
variables or attributes of which it is comprised.

Cases and their trajectories are treated as composites (profiles), comprised of an
interdependent, interconnected sets of causal conditions, variables, factors or
attributes.

And, finally, cases and their relationships and trajectories are the methodological
equivalent of complex systems — that is, they are emergent, self-organising, non-
linear, dynamic, network-like and so on — and therefore should be studied as such.



Case-Based Modeling Additional Tenets

1 Cases and their trajectories are dynamically evolving across time/space and,
therefore, should be explored to identify their major and minor trends.

2 In turn, these trends should be explored in the aggregate for key global-temporal
patterns, as in the case of spiralling sources and saddles.

3  The social interactions amongst cases are also important, as are the hierarchical
social contexts in which these relationships take place.

4  And, finally, the complex set of relationships amongst cases is best examined using
the tools of network science and simulation.



What is a case?

* a case c is simply an abstract
description of the qualitative and
guantitative characteristics of some
object under study.

e Cases can be individuals in a
dataset, nodes in a network,
interacting agents in simulation,
groups being clustered,

organisations, cities, countries and
so forth.




Defining a case mathematically

The state of a case c, is described by its profile, as measured by one or more vari-
ables x,, where j can take on integer values from 1 to k. In other words, each case has
a profile that can be described by the values taken on by the k variables ( Xi1s Xinyeoer Xig ]
This arrangement of the variables in the form of a row is called a row vector. Hence,
¢; =(X;,X;,..., X; ) denotes the profile of the ith case (o

We envision a large database D consisting of row vectors ¢; = (x,.l,x,.z,...,x,.k), where
each element X, is a measured variable for some case profile c(f), as defined for a
particular instant of time t. Suppressing the dependence on time t, one can represent

such a database D in matrix form as shown below:

Bl = = % = (6.1)



& | Area Code  ~

+] Isle of Anglesey

'+ Gwynedd
Case — 1 Conwy

! Denbighshire

*/ Flintshire

) Wrexham

! Powys

+I Ceredigion

| Pembrokeshire

I+l Carmarthenshire

= Income (=) Health
Employment

Peoplein§é = Working-& | GP- & é & GP- & cCanceré  Low$ ]
income age people | recorded | Limiting | Premature @recorded @ incidence @ birth | Children

deprivation in chronic long- death mental | (rate per = weight = aged

(%) employment = condition | term (rate per health 100,000) @ (live 4-5
deprivation | (rate per @ illness 100,000) | condition single | who are

(%) 100) O (rate (rate per births | obese
per 100) © less | (%) O

100) than
2.5kg)
(%)
16 10 14.3 22.7 382.4 23.2 611.9 S5 11.8
Vector

15 10 12.9 20.6 375.6 23.7 593.6 5.1 11.4
17 11 147 21.8 397.4 28.2 639.3 0.1 122
12 8 14.1 19.7 358.1 23.1 647.8 5.4 11.2
15 9 14.3 21.5 393.7 24.3 637.3 6.4 12.4
11 7 12.8 18.8 309.1 19.0 579.8 4.7 10.5
12 8 12.7 20.0 322.4 19.9 545.5 4.8 10.5
15 10 13.1 20.5 345.8 22.1 606.1 5.2 12.5
15 11 13.9 23.7 365.5 20.0 602.6 5.4 12.8

<& Case Profile

https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Welsh-Index-of-Multiple-
Deprivation/WIMD-Indicator-data-2019/indicatordata-by-localauthority



* Clustering and Classification are mathematical technique
that let us group together cases that have similar profiles — as

well as position them away from groups of cases with
different profiles.

Classification

* While both approaches often use the same mathematical

" algorithms, the former uses a training set of known case-
an d Cl u Ste rin g based clusters to arrive at its results, while the latter is largely
exploratory, seeking to identify groupings that may or may
not be known.




Ch. 7. Clustering
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Partitioning methods

Here, the number of clusters K is predetermined, and the cases ¢; are iteratively
assigned and reassigned to the clusters using a non-optimal or greedy algorithm.
There are two types of partitioning methods.

The first type is called error minimization algorithms. A perfect example is the
K-means algorithm, where we start with K cluster centers, assign all cases based on
the nearest center, recalculate the means of the cluster and keep iterating until the
error minimization criterion is satisfied. This is a gradient descent method, because it
can be mathematically proved that the sum of squares error actually decreased from
one iteration to the next. However, it is not a globally optimal routine. The time
complexity for T iterations with K-means, N cases and k variables per case is given to
be O(T * K * k * N). The linearity of time complexity is one of the main reasons why
this algorithm is very popular.
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Iteration 1, Step 2a
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Using Al

* A self-organizing map (SOM) or self-organizing feature map (SOFM) is
an unsupervised machine learning technique.

* Itis used to produce a low-dimensional (typically two-dimensional)
representation of a higher dimensional data set while preserving the
topological structure of the data.

* For example, a data set with p variables measured in n observations
could be represented as clusters of observations with similar values
for the variables.

* These clusters then could be visualized as a two-dimensional "map"
such that observations in proximal clusters have more similar values
than observations in distal clusters.

* This can make high-dimensional data easier to visualize and analyse.



https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Topology

iy -

An illustration of the training of a self-organizing map. The blue blob is the distribution =
of the training data, and the small white disc is the current training datum drawn from that
distribution. At first (left) the SOM nodes are arbitrarily positioned in the data space. The
node (highlighted in yellow) which is nearest to the training datum is selected. It is moved
towards the training datum, as (to a lesser extent) are its neighbors on the grid. After many
iterations the grid tends to approximate the data distribution (right).




— '.I ov———
I LA -:“. * v

Bl ¢ pic o v e wnt

Rl g’ ™

——

2 L ]
. - SarevS
( l([[“'u

B
Qe
. Ly .'\.
P S 3

T B 'I."""

..‘”’N.

m——
irs, -
. l,' “ Ay

...".’M“u;._:
& gl"th\
" “,-’
| b

Mol

'l . ; { > ..illl-.- v
'l L . 088 2nd Ungv Medicine THNIERETEEN
! \Va& 9 i
’ -5 :J 7 ‘\'t- ) 4 A 13¥ , S
: A /,5,‘ ) - 3 .,"'_ "' - )’]\, . OGN R s
" (S5 JoSOP'. R
et : oo 10 = . ;
L gy C\ Q. ph Mathematcs SClGn o
» - ,/"/ 1“ ,/"

Cartographical representation of a self-organizing map (U-Matrix) based on Wikipedia featured article data
(word frequency). Distance is inversely proportional to similarity. The "mountains" are edges between

clusters. The red lines are links between articles.


https://en.wikipedia.org/wiki/U-Matrix
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COMPLEX-IT is a web-based and downloadable software tool designed to increase your access to the
tools of computational social science (i.e,, artificial intelligence, micro-simulation, predictive analyt-

ics). It does this through a user friendly interface, with quick access to introductions on concepts and
methods; and with directions to richer detail and information for those who want it.

The result is a seamless and visually intuitive learning environment for exploring your complex data
-- from data classification and visualisation to exploring simulated interventions and policy changes
to data forecasting.

You don’t need any technical expertise to start using COMPLEX-IT, all that is required is a data
set you want to explore, and a curious mind!
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ORIGINAL PAPER WILEY dgur"neﬂof E\{Eulbtd‘atlon in Clinical Practlce_

Exploring comorbid depression and physical health trajectories:
A case-based computational modelling approach

Brian Castellani PhD, Professor of Sociology®® |
Frances Griffiths MD PhD, Professor of Medicine®® |
Rajeev Rajaram PhD, Associate Professor* | Jane Gunn MD PhD, Professor of Medicine®

Abstract

While comorbid depression/physical health is a major clinical concern, the conven-
tional methods of medicine make it difficult to model the complexities of this relation-
ship. Such challenges include cataloguing multiple trends, developing multiple complex
aetiological explanations, and modelling the collective large-scale dynamics of these
trends. Using a case-based complexity approach, this study engaged in a richly
described case study to demonstrate the utility of computational modelling for primary
care research. N = 259 people were subsampled from the Diamond database, one of the
largest primary care depression cohort studies worldwide. A global measure of depres-
sive symptoms (PHQ-9) and physical health (PCS-12) were assessed at 3, 6, 9, and
12 months and then annually for a total of 7 years. Eleven trajectories and 2 large-scale
collective dynamics were identified, revealing that while depression is comorbid with
poor physical health, chronic illness is often low dynamic and not always linked to depres-
sion. Also, some of the cases in the unhealthy and oscillator trends remain ill without
much chance of improvement. Finally, childhood abuse, partner violence, and negative
life events are greater amongst unhealthy trends. Computational modelling offers a
major advance for health researchers to account for the diversity of primary care patients
and for developing better prognostic models for team-based interdisciplinary care.

Cases were labelled according to
their k-means cluster membership
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