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The Field of Case-Based Complexity

Case-based complexity is a suite of interdisciplinary methods first advanced by David Byrne and
colleagues as an improvement on the conventions of cased-based qualitative configurational
analysis (QCA).

While marginal to mainstream computational methods, case-based complexity is an established
field of study, particularly in sociology, policy studies, political science, governance, urban
planning and public administration.

Case-based complexity is grounded on Byrne’s novel insight that cases meet the definitional
critique of complex systems.

An excellent introduction to this methodology is Byrne and Ragin’s Sage handbook of case-based
methods.
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Case-based complexity can be divided into a more computational versus qualitative approach.
On the computational side are techniques such as cluster analysis and dynamic pattern synthesis.

On the qualitative side is process tracing and trajectory-based qualitative comparative analysis
(TJ-QCA).

See, for example:

Cooper, B., & Glaesser, J. Using case-based approaches to analyse large datasets: a comparison of
Ragin’s fsQCA and fuzzy cluster analysis. International Journal of Social Research Methodology.
2011: 14(1), 31-48.

Haynes, P. Social synthesis: Finding dynamic patterns in complex social systems. Routledge, 2017.

Krueger, K., & Wright, M. Theory amidst complexity—using process tracing in ex-post evaluations.
New Directions for Evaluation, 2022 (176), 119-128.



Case-based complexity is anchored in four core epistemological
arguments:

1. Cases are the methodological equivalent of complex systems
— that is, they are emergent, self-organizing, nonlinear,
dynamic, etc — and therefore should be studied as such.

2. The case and its trajectory across time/space are the focus of
study, not the individual variables or attributes of which it is
comprised.

3. Cases and their trajectories are best treated as composites
(profiles), comprised of an interdependent, interconnected
sets of causal conditions, factors or attributes.

4. The wider social contexts/systems in which cases are situated
needs to be considered.



CASE-BASED MODELLING AS CONFIGURATIONAL THINKING

Configurational theorising pushes the researcher to engage in three
distinct ways of thinking about complex social causality that are, in
combination, theoretically innovative.

The first, and perhaps most original, is causal asymmetry: the idea that
the configuration of causal conditions that lead to some outcome may be
very different from the configuration of conditions that leads to the
absence of that outcome.

For example, the causal conditions that account for high performing,
affluent schools can differ from those that explain the absence of high
performance in economically deprived schools.



CASE-BASED MODELLING AS CONFIGURATIONAL THINKING

The second is that of the pair of equifinality and multifinality.

Equifinality concerns those instances where different configurations of
conditions co-occur with similar outcomes.

Multifinality is the opposite of equifinality. It expresses that similar
configurations of causal conditions can co-occur with the outcomes.



CASE-BASED MODELLING AS CONFIGURATIONAL THINKING

The third is conjunctural causation: the idea that a single condition impacts
an outcome through its qualitative causal linkages with the other
conditions in a configuration.

This way of thinking about causality is similar to what Warren Weaver
definition of organised complexity, where the factors in a configuration are
deeply interrelated forming an organic whole, such that any one
condition’s impact on an outcome requires an understanding of the others.



Configurations as Complex Systems

Here we will develop the idea of cases as complex systems a bit more into a
formal outline:

e (Cases are complex systems and complex systems are cases.

e Cases can be all types of social actors, from governments and
organisations to school systems and cities to existing group of people
positioned at the intersection of multiple systems of oppression.

e As a complex system, some cases, such as a school system or a poor
urban community, can be comprised of a set of cases, acting as agents.
Other cases, such as a person, will be singular in their social agency.
Depending upon the desired level of granularity, a case, such as a
government or country, can be treated as a singular entity with a
singular configuration — as is done in economic complexity, for example,
or diplomacy studies.



Configurations as Complex Systems

Here we will develop the idea of cases as complex systems a bit more into a
formal outline:

e The construction of the case and its categories (causal conditions) are
open to interrogation and are recognised as necessary traces of the
system of study.

e Cases have boundaries, even if structurally or functionally open-ended,
but again there is always a concern for the boundaries that categories
create.

e Defining the boundaries is therefore a matter of focus, scale and agenda
relative to some given outcome.

e Cases, as systems, are self-organising and emergent, where the whole is
more than the sum of its parts; and yet the parts are important, as they
help to increase the complexity of social inquiry and our understanding
of causal complexity and to bring attention to intersections (nexus
points) that are otherwise erased, marginalised or ignored.

e Causal conditions are the intersecting structures of a case, as a system.
They may appear as intersecting forces of oppression or social factors.



Configurations as Complex Systems

Here we will develop the idea of cases as complex systems a bit more into a
formal outline:

e Configurations and their intersectional arrangements are the
organisational patterns of a case, which can take the form of complex
networks.

e The qualitative interactions amongst the configurations making up a
case, relative to some outcome, constitute its dynamics, including issues
of agency and power relations.

e (Qualitative interactions are nonlinear, comprised of feedback loops, and
constitute the case’s complex causality.

e In terms of complex causality, both systems and cases are best
understood in terms of causal asymmetry, equifinality, multifinality,
conjunctural causation, and necessary and sufficient conditions.



The System in the
Configuration

To help demonstrate how
one can think about case-
based configurations as
systems (and vice versa),
consider the following
example. Suppose you
had a systems map, like
the one shown here.
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The System in the Configuration

While the map is useful for making better sense
of the policy system in which this public health
issue is situated, the ultimate question for your
urban community stakeholders is how this relates
to them?

* How can they make use of the systems map?

e What does it tell them about which social
determinants to address to improve air quality
for their community?

* In other words, how do you put the case and
its agency, identity, and relations of power
back into the complex system of study?

e That is where configurational theory comes
into play.
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ENERGY HOUSING PUBLIC TRAFFIC PERCENTAGE PERCENTAGE GREEN OUTCOME
COSTS CONGESTION TRANSPORT CONGESTION INPOVERTY  MINORITIES  SPACE (Urban Air
Quality)
COMMUNITY | High Medium Extensive Severe High High Poor Poor
A
COMMUNITY | Medium High Moderate Moderate Moderate High Poor Poor
B
COMMUNITY | Low Low Extensive Low Low Low Excellent || Excellent
C

To make use of the map you shift from constructing your system to understanding life within it —in this
case, the air quality of a given urban community as brought forward through conjunctions of conditions,
as shown in our map.

The result are shown in tablature form in the Table here.

* |t features the three communities (the cases), each with its own vector configuration.

* The configuration is comprised of our seven conditions, ranging from such social determinants as
energy costs to traffic congestion to access to green space.

* The outcome (asin the map) is urban air quality.

* Each community now has a range of scores on these seven conditions.



ENERGY HOUSING PUBLIC TRAFFIC PERCENTAGE PERCENTAGE GREEN OUTCOME
COSTS CONGESTION TRANSPORT CONGESTION INPOVERTY  MINORITIES  SPACE (Urban Air
Quality)
COMMUNITY | High Medium Extensive Severe High High Poor Poor
A
COMMUNITY | Medium High Moderate Moderate Moderate High Poor Poor
B
COMMUNITY | Low Low Extensive Low Low Low Excellent || Excellent
C

Looking at the scores, Communities A and B struggle with issues of poverty and deprivation, sitting at
the intersection of various interlocking systems of inequality, as in the case of medium to high levels of
housing congestion, moderate to severe traffic congestion and limited access to green space.

Minorities are also disproportionately living in these two urban communities.

In switching to the table, you are effectively turning the systems map on its side to create a seven-factor
configuration



Case-Based Modelling

Working within the general framework of case-based complexity, Castellani
and colleagues have develop case-based modelling.

While primarily computational, case-based modelling is an interdisciplinary
methods platform that employs a variety of techniques.

SEE:

Castellani, B & R. Rajaram (2023) Big Data Mining and Complexity. Volume
11 of the SAGE Quantitative Research Kit. For more on this approach, see
our website: https://www.art-sciencefactory.com/cases.htmi



https://www.art-sciencefactory.com/cases.html

In terms of the core assumptions of case-based complexity listed earlier, case-based
modelling positions itself as follows:

e Cases are best viewed as complex systems. In some instances, this means
exploring a dataset as a complex system comprised of interdependent cases; in
other instances, given an absence of relationships, it means exploring the cases in
a dataset as independent complex systems.

e Cases and their multiple trajectories are dynamically evolving across time/space
and, therefore, should be explored to identify their major and minor trend, as
well as issues of equifinality and multifinality.

e These trends also should be explored in the aggregate for key global-temporal
patterns, as in the case of spiralling sources and saddles.

e The social interactions amongst cases are also important, as are the multi-level
social contexts and complex systems in which these relationships take place.

SEE: Castellani, B & R. Rajaram. Big Data Mining and Complexity. p. 57.



A distinct advantage of case-based modelling is the set of
mathematical formalisms it has developed, which allow
users to treat the compendium of computational
modelling techniques — from network analysis to machine
learning — as case-based.

In making this mathematical move, case-based modelling
creates a platform for combining computational and
qualitative methods, including QCA, systems mapping
and AM-Smart methods.

For an overview of these mathematical formalisms, see
Big Data Mining and Complexity.

SEE Castellani, B & R. Rajaram. Big Data Mining and Complexity.

BIG DATA
MINING AND

COMPLEXITY

BRIAN C. CASTELLANI
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COMPLEX-IT

Team

As a team we are commitied fo advancing o case-based complexity approach to research,
policy and practice in an effort to advance the study of social complexity and to support decision
making. We each bring to the team a wide range of methodological and programming expertise

and are proud of the truly transdisciplinary and international makeup of our work.
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Oxford University
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COMPLEX-IT is part of the AM-Smart movement in methods

Advances in the integration of smart technology with interdisciplinary methods has
created a new genre, approachable modelling and smart methods — AM-Smart for short.

AM-Smart platforms address a major challenge for applied and public sector analysts,
educators and those trained in traditional methods: accessing the latest advances in
interdisciplinary (particularly computational) methods.

AM-Smart platforms do so through nine design features. They are

(1) bespoke tools that

(2) involve a single or small network of interrelated (mostly computational)
methods

(3) they also embed distributed expertise

(4) scaffold methods use

(5) provide rapid and formative feedback

(6) leverage visual reasoning

(7) enable productive failure

(8) promote user-driven inquiry

(9) while counting as rigorous and reliable tools



COMPLEX-IT is a case-based, mixed-methods platform for applied social
inquiry to complex data/systems, designed to increase non-expert access to
the tools of computational social science.

Presently, the platform is comprised of a bespoke suite of techniques,
including:

1. cluster analysis

2. artificial intelligence

3. data visualization

4. data forecasting

5. case-based systems mapping

6. case-based scenario simulation



COMPLEX-IT supports applied social inquiry though a design-based
emphasis on learning about the complex data/system under study. It
does by

(a) identifying and forecasting major and minor clusters/trends
(b) visualizing their complex causality

(c) mapping and simulating scenarios for potential interventions.

COMPLEX-IT is that it is accessible through the web or can be run
locally and is powered by R and the Shiny web framework and
includes written and video tutorials.
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