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In the health informatics era, modeling longitudinal data remains problematic. The issue is method: health data

are highly nonlinear and dynamic, multilevel and multidimensional, comprised of multiple major/minor trends,

and causally complex—making curve fitting, modeling, and prediction difficult. The current study is fourth in a

series exploring a case-based density (CBD) approach for modeling complex trajectories, which has the following

advantages: it can (1) convert databases into sets of cases (k dimensional row vectors; i.e., rows containing k ele-

ments); (2) compute the trajectory (velocity vector) for each case based on (3) a set of bio-social variables called

traces; (4) construct a theoretical map to explain these traces; (5) use vector quantization (i.e., k-means, topographi-

cal neural nets) to longitudinally cluster case trajectories into major/minor trends; (6) employ genetic algorithms

and ordinary differential equations to create a microscopic (vector field) model (the inverse problem) of these trajec-

tories; (7) look for complex steady-state behaviors (e.g., spiraling sources, etc) in the microscopic model; (8) draw

from thermodynamics, synergetics and transport theory to translate the vector field (microscopic model) into the

linear movement of macroscopic densities; (9) use the macroscopic model to simulate known and novel case-based

scenarios (the forward problem); and (10) construct multiple accounts of the data by linking the theoretical map

and k dimensional profile with the macroscopic, microscopic and cluster models. Given the utility of this approach,

our purpose here is to organize our method (as applied to recent research) so it can be employed by others. VC 2015
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1. INTRODUCTION

M
odeling the nonlinear dynamics of complex health

trajectories across time presents a number of seri-

ous challenges for scientific inquiry [1–5]. The
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challenge comes in the form of method (both in terms of

the complexities of data and the limitations of conven-

tional techniques).

In terms of data, the challenge is that complex trajecto-

ries, be they cohort or longitudinal data: (1) seldom follow

a singular common trend; instead, (2) they self-organize

into multiple major and minor trends; which, (3) when

modeled microscopically, are highly dynamic and com-

plex—often taking the form of a variety of complex behav-

iors—making curve fitting, prediction and control (for

example, health management) very difficult; furthermore

(4) these continuous trends are often a function of differ-

ent measurements (k dimensional vectors) on some pro-

file of biomedical-psycho-social factors and (5) the

complex set of qualitative interactions and relationships

amongst these variables [1–3].

Our last point on data leads to the challenge of tech-

nique: (1) while medicine and health are ultimately about

the case – k dimensional vector profiles – health research-

ers tend to ignore these complex profiles and the set of

qualitative interactions of which they are comprised; (2)

focusing, instead, on what they deem to be the most

salient (and relatively independent) handful of variables

relevant to some outcome of concern; (3) which they

model by controlling for the remaining profile of variables;

(4) furthermore, they study these few factors using some

form of linear (and often discrete) modeling/statistics; (5)

typically in the search for the most common one or two

aggregate trends [1–3].

As a result of this approach, there is a major discon-

nect between health data and health research, making it

difficult for scientists to do such things as (1) model the

aggregate nonlinear dynamics and complex trajectories of

cases or their densities in continuous time; (2) detect the

presence of multiple trends (i.e., major and minor) across

time; (3) identify and map complex steady-state behaviors

(i.e., transient sinks, spiraling sources, periodic orbits); (4)

explore and predict the motion of different health trajecto-

ries and time instances; or (5) link these different trends

to the complex k dimensional vectors/profiles upon which

they are based, so that (6) they can construct a multilevel

theoretical model of their topic of study [4–7].

While the above disconnect between health data and

technique is problematic, researchers are beginning to

‘turn’ to the complexity sciences and computational mod-

eling and related areas of inquiry—genetic algorithms,

dynamical systems theory, network analysis, differential

equations, control theory, etc—for possible solutions [8].

In regards to this ‘complexity turn,’ we seek to demon-

strate the utility of case-based complexity for modeling

complex health trajectories [9].

Case-based complexity combines case-comparative

method with the various theoretical and methodological

tools of the computational and complexity sciences to

advance the modeling of complex (social and health) sys-

tems, which it does by treating complex systems as sets of

cases (i.e., k dimensional vectors/profiles) [4–7]. The plat-

form we created for this approach is called the SACS Toolkit

[4–7].

The SACS Toolkit is a case based, computationally

grounded, mixed methods framework for modeling com-

plex systems. One of its key strengths—called a case-

based density approach—is its capacity to model the non-

linear dynamics of complex trajectories, particularly in the

form of cohort or longitudinal data [4,5]. To do so, it

employs a novel combination of case-comparative method

in conjunction with vector quantization, genetic algo-

rithms, ordinary differential equations (ODE), Haken’s syn-

ergetics, the inverse-forward problem, and nonequilibrium

statistical mechanics, specifically transport theory and the

continuity (advection) partial differential equation (PDE).

The result is a ten-step, multilevel procedure for trans-

forming the nonlinear dynamics of complex trajectories

into cases, clusters, and densities [4–7].

The current study is fourth in a series. [4,5,7] The purpose

of the first three papers was to provide a mathematical out-

line of our approach [7] and to work on several key steps,

including (1) a technique for fitting an ODE directly to data

and (2) a procedure for using the vector field thus obtained

to simulate the evolution of the distribution of cases (as den-

sities) across time using the advection PDE [4,5]. Still, the

following remains to be done. We have yet to:

1. assemble our ten steps into a formal outline for

others to employ;

2. highlight how the various and multiple outputs of

our ten steps go together to create our multi-level

model; and

3. demonstrate the utility of our approach in applica-

tion to several of our recent studies.

Hence, we come to the purpose of the current study:

we seek to formalize our case-based density approach, as

employed through the SACS Toolkit, in application to sev-

eral of our recent health studies, including a study on allo-

static load [10], public health [1], and international health

[5], along with a forthcoming study on depression and

wellbeing [11]. While the last three studies are all longitu-

dinal, the first is discrete; nonetheless, we will refer to it

here, as it was crucial to developing several of our steps.

2. MODELING HEALTH TRAJECTORIES: CASES, CLUSTERS
AND DENSITIES

Case-based density modeling, as employed through the

SACS Toolkit, is a ten-step, multilevel procedure for study-

ing the nonlinear dynamics of complex trajectories, the

process of which can be summarized as follows:
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2.1. Steps 1 Through 4: Cases, Traces, and Profiles
The purpose of the first four steps is to construct a

case-based portrayal of the topic (complex system) of

study by: (1) rethinking the database from a case-based

(as opposed to a variable-based) perspective; (2) comput-

ing the trajectory (velocity vector) for each case, based on

(3) an identified set of variables (which, in case-based

terms, we call traces – which we will explain below); and

(4) constructing a working theoretical model to explain

the trajectory of these traces.

2.1.1. Step 1

The first step is an epistemological one: it requires a

cognitive shift from a variable-based to a case-based view

of the topic (complex system S) of study. In doing so, we

follow Byrne [12] and Ragin [13,14] and the notion of cas-

ing, which allows us to (a) treat our topic of study as a

complex system and (b) in turn, vary our notion of what

the ’case’ is, depending upon different empirical concerns.

In terms of the first point, according to case-based

complexity, cases are complex profiles comprised of a set

of inter-dependent variables, which are contextually

dependent, nonlinear, dynamic, evolving, self-organizing,

emergent, etc. in short, cases have the same characteris-

tics as a complex system. Theoretically speaking, then,

cases can be treated and modeled as complex system.

[8,9].

It is, nonetheless, important to point out that, while

cases can be treated as complex systems, not every and

any set (profile) of variables can be treated as such. As

Byrne [12] and Ragin [13,14] make clear, a case-based

approach requires theoretical rationale, grounded in

empirical support. (For more, see Byrne [12] and Ragin

[13,14])

In terms of the second point, however, the cases for

any given study can vary significantly. For example, a case

may be a theoretical construct, a commonly recognized

empirical unit, or some combination thereof. Cases can

also form part of or contribute to a complex system S of

study. Or, cases may be considered as nested within a

complex system S. We will call these types of ’nested’

cases ’second-order’ for now. In such instances, there is

interpenetration of the complex system S and these

second-order cases. [15] Finally, and yet again, a complex

system S might be considered as nested within some set

of second-order cases. In short, numerous possibilities

exist.

Nonetheless, to make our approach clear, for us, in the

initial stages of analysis, we primarily treat cases as com-

plex configurations, similar to Ragin. [13,14]. Furthermore,

we often do see cases and complex systems as nested in

one another. And, following Byrne, in the final stages of

analysis, when we get to constructing our multiple narra-

tives, we treat cases in more ‘storied’ terms. But, overall,

we are primarily grounded in the idea of complex systems

as comprised of sets of cases, which emerge out of the

configuration of k dimensional row vectors – which we

will discuss in a moment.

By way of example, here are two illustrations where we

reconceptualized a topic of study in case-based, complex

systems terms. In a recent public health study, we con-

ducted on a Midwestern county in the United States [1],

our case was a County, which we conceptualized (using

census data) as a set of 20 communities (smaller cases).

As such, as shown in Figure 1, for our study we moved

back and forth between Summit County (our primary

case) and its twenty major communities (our more spe-

cific cases). Here, the nesting of the more specific cases

within our primary care was relatively clear, and the cas-

ing was both empirical and conceptual. Furthermore, fol-

lowing Cilliers, the boundary for our primary case was

‘‘simultaneously a function of the activity of the system

itself, and a product of the strategy of description

involved’’ [15], as well as a coupling between our primary

case and its nested hierarchy of cases, and their combined

evolution across time/space. [12]

As a second example, in a recent study, we conducted

on the negative impact of stress, we treated allostatic load

as our primary case [10]. (This is a less conventional use

of casing than the example of county and community,

albeit medicine is, in practice, based on the idea of cases

and casing.) We did this by conceptualizing it as a com-

plex clinical construct, comprised of a large number of

interdependent biological subsystems, which are repre-

sented by an even larger number of interconnected bio-

markers. However, when it came to our database,

allostatic load became more of an abstraction, as we did

not seek to build a single model of this clinical system.

Instead, we sought to treat each of our N 5 1151 cases

(people) as an individualized model. In other words, each

case in our study constituted one possible way that allo-

static load manifests itself in people’s lives; one possible

trajectory in the larger state-space of all possible trajecto-

ries, based on the unique way allostatic load self-

assembles itself for each case. Furthermore, there is clearly

coupling taking place between allostatic load (the primary

case), and the individuals in the study living their life (the

second-order cases.)

As these two examples illustrate, it is this unique, case-

based approach that distinguishes our method from the

’single-model, variable-based approach’ common to many

methods in statistics and mathematical modeling. How-

ever, in turn, it makes our approach similar to more recent

developments in data mining and data sciences, as well as

such techniques as agent-based modeling, Markov mod-

els, and latent growth and mixed-methods modeling—

which, by the way can be (and have been) employed in

conjunction with our technique. Similar to these
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approaches, we begin with the assumption that any com-

plex system of study requires multiple and different (albeit

interconnected) case-based models, as there is no one tra-

jectory taken by the system’s cases. Instead, cases follow

and cluster together along multiple major and minor

trends, which we will discuss below. And, following Ragin,

[13,14] we assume that systems and cases are often

nested, requiring multi-level and hierarchical modeling.

With this epistemological shift in thinking established,

next the database requires further reconceptualization.

From a case-based complexity perspective, each row in

a study’s database D becomes a complex case ci, where

each ci is a k dimensional row vector ci5½xi1; . . . ; xik� and

where each xij represents a measurement on the profile of

longitudinal variables (traces) for D – what case-based

researchers call the case profile. For example, in our pub-

lic health study (Figure 2) we treated each of the 20 cases

(communities) as a set of measurements on an in-depth

profile (k dimensional row vector) of contextual, composi-

tional and health factors. Furthermore, these variables

FIGURE 1

Map of twenty communities in Summit county.
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(traces) were measured at two discrete time points (2000

and 2010). In turn, in a recent international health study,

we examined the longitudinal relationship between per-

capita GDP and human longevity rates (our two profile

variables) for 156 countries (each a complex dynamical

case) over the course of 63 years. Data for this model

came from the widely used Gapminder dataset http://

www.gapminder.org/.

The temporal nature of these two examples take us to

our next point: cases ci are not static; instead, they are

dynamic and evolving. As such, in terms of cohort and

longitudinal databases D, each case ci in D is, ultimately, a

complex dynamical system ciðjÞ, where j denotes the time

instant tj. In turn, if the trajectories of cases ci change

across time/space, so too must their vector configurations

ci5½xi1; . . . ; xik�. As such, in terms of cohort and longitudi-

nal studies, D is comprised of a series of ciðjÞ, one for

each moment in time/space tj (discrete or continuous), on

which a set of measurements are taken to construct a par-

ticular model of the complex system of study S.

Two examples: First, in a new study we are conducting

on depression and wellbeing, we examined seven years

worth of trajectory data [11]. Data for this study (N 5 259

cases) came from a subsample of the Diamond Prospec-

tive Longitudinal Cohort Study, one of the largest primary

care depression cohort studies worldwide. [2,3] Second, in

our international health study (as mentioned above) we

examined the longitudinal relationship between per-capita

GDP and human longevity rates for 156 countries over the

course of 63 years. In fact, Figure 3 shows a microscopic

model of the trajectories of these countries across time

(shown in blue) along with the model we ’fitted’ to the

data (shown in green). The X-axis represents GDP; and the

Y-axis represents life expectancy.

2.1.2. Steps 2 and 3

With the database reconfigured into a case-based

framework, the next two steps are to identify and model

the key traces of the system.

The challenge with modeling cohort and longitudinal

data is that, given some complex profile of study, the

resulting vector configuration ci5½xi1; . . . ; xik� and corre-

sponding vector field are k dimensional and therefore too

complex or dynamic to be accurately modeled [8,16]. As a

result, even with a working map in hand, one rarely has

direct access to the actual state of the system studied.

Instead, one studies the system’s state in a modified form.

Drawing upon the work of Byrne and Callaghan [8], we

refer to this modified form of the system as they do, defin-

ing it as its trace. (For those interested in a detailed

FIGURE 2

Variables used to assemble case-based profile for 20 communities.
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account and defense of this concept, see [8].) In other

words, while the ultimate modeling goal of case-base

complexity is idiographic analysis, one never fully models

the complete complexity of a case or set of cases; instead,

one only studies their traces, albeit from a case-based,

complex systems perspective.

For example, in a typical health study, one often only

has access to the measurements that were made for each

case; and these measurements (temperature, blood pres-

sure etc.,) are simply observables exhibited by the human

body. The true state (by contrast) is the actual blood flow

through the arteries of the body or the ability of the body

to cope with impending disease.

By way of another example, we can turn to control

theory. In control theory, the ability of one’s identified

measures to accurately indicate the true state of the sys-

tem is (roughly speaking) defined as the observability of

the system under study. Highly observable systems, for

example, allow for measurements that are very good indi-

cations of the true state; by contrast, systems with low

observability have measurements that are not able to truly

capture the state of the system through the external meas-

urements. The trace variables (which are often selected

after much consultation with subject matter experts) are,

in general, those that improve the observability of com-

plex system—often as first quantitative indicators. [17] For

a precise definition of observability see [18]

Theoretically speaking, for [8] a trace can be anything

measurable that is directly/indirectly influenced by the

actual state of a system. In practice, however, given our

complex-systems perspective, we find it useful to begin

with the output/dependent variables in a case-based pro-

file. Two reasons:

First, the output is typically what researchers are trying

to understand, model, manage or control. For example, in

our study of public health, we were primarily interested in

community-level health outcomes across time (Figure 2);

and, in our study of international health, the focus was on

human longevity (across time) in each of our 156 coun-

tries (Figure 3). Nonetheless, once these output traces are

explored, one continues onward to increase the complex-

ity of the study by exploring their intersection with other

key traces—which takes us to the next point.

Second, starting with the dependent traces provides a

useful way to avoid becoming bogged down in the multi-

ple traces and their interactions within the case-based

profiles. As we will discuss later, the purpose of Step 10 is

to explore how the traces (as outcomes, outputs, depend-

ent variables) link to, evolve or change in relationship to

other key biological, psychological, social or ecological

traces. For example, in our public health study, we exam-

ined our community-level health outcomes in relation to

the compositional and contextual factors shown in Figure

2; and, in our international health study, we examined

human longevity rates in each country in relation to that

country’s per-capita GDP.

With the traces identified, the next thing is to use them

to compute the velocity vector for each case. Later, in

Steps 5 and 6, we detail the process of computing the

velocity vector field. Here we want to provide our rationale

for why velocity vectors are so important to our approach.

A key feature of our approach, mathematically speak-

ing, is our link between an ’algebraic-based’ definition of

cases as k dimensional vectors and a ’calculus-based’ defi-

nition of vectors as quantities with direction and magni-

tude. We make this link for several reasons: it allows us to

FIGURE 3

Case trajectories for 156 countries with model fitted to data.
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(1) treat cases (when possible) as continuous trajectories

(traces); (2) compute these continuous trajectories (traces)

as a function of change between time-stamps (something

statistics struggles, at best, to do); (3) examine these

changes as a function of discrete or continuous measures

on the k dimensional vector for each case (which brings

in our theoretical model); (4) employ ODEs to explore the

rate of change or velocity of cases (first-order ODE), as

well as acceleration (second-order ODE) if needed; and (5)

link steps 1 through 4 with the modeling processes in

steps 5 through 10. As such, computing the velocity vector

for each case functions as the main methodological link

upon which our approach is based. (As a side note, dis-

crete or hybrid trajectories can be handled by the use of

nonlinear difference equations instead of differential

equations. We have not tried this approach yet, but pre-

sume that it will be an easy implementation.)

2.1.3. Step 4

With the velocity vectors computed, the next step is to

construct a working theory (map) of the topic of study.

The purpose of this map is to theorize, albeit tentatively,

how the factors in the case-based profile—as a complex

system of interacting variables—go together in relation to

the set of outcome(s) being observed, which are treated as

trajectories (traces) across time/space.

For example, to arrive at our conceptualization of com-

munity health as a complex system we needed a theoreti-

cal map. The result was Figure 4. The utility of this map is

that it gave us an idea of what traces to explore and how

to think about their complex inter-relationships, particu-

larly in relation to our community health outcomes

(which we will discuss later). For example, looking at the

map, one sees the key factors outlined in Figure 2

(compositional and contextual) as well as some of the key

environmental forces we explored in our study; also one

sees the three types of maps we constructed for our

study, including (as we will discuss in Step 10) a social

network analysis of the relationships amongst our 20

communities.

Another example of the importance of a theoretical

model is our study on allostatic load. A shown in Figure 5,

FIGURE 4

Theoretical map of twenty communities and trace variables in Summit county.
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the utility of this map was that it gave us an idea of what

traces to explore and how to think about their complex

interrelationships, particularly in relation to various health

risk outcomes (which we will discuss later). Using this

map, we worked with context experts to settle on 20 key

biomarkers—each constituting one of the key variables

(traces) in our k dimensional profile. We then factor ana-

lyzed these 20 biomarkers to construct a seven-factor

solution, as shown in Table 1. In turn, these seven factors

became our seven main trace variables.

2.2. Step 5: Major and Minor Clusters and Trends
With the theoretical map constructed, the fifth step is

to identify the major and minor trends in the data, based

on the traces initially chosen for study. (Note: for us,

’major’ refers to clusters with high membership and

’minor’ refers to relatively lower memberships.) This step

is done using k-means cluster analysis and the topograph-

ical neural net known as the self-organizing map [19–22].

Our approach is unique in three important ways:

2.2.1. Knowledge-Free, Unsupervised Clustering

First, it is unique in that we take an unsupervized

approach to trend identification. Based on the multiplicity

of possible trajectories generated by the theoretical model

from Step 4, we do not make any reductive or retroductive

assumptions about the number of cluster trajectories or

possible major and minor trends in the data. Instead, we

strive to identify these trends first and then model them

separately for each trace, thereby allowing for the creation

of multiple models for the same system.

Unsupervised in this context, therefore, has a very

precise meaning. Following [19–22] it means that, at this

stage in the modeling process, the data are examined as

longitudinal trajectories without any context, then con-

verted to z-scores to remove bias, and then clustered

using known methods. It is only after identifying the

major and minor trends that these case trajectories are

examined to determine their empirical veracity and the-

oretical utility. It is in this sense that we use the term

knowledge-free. By contrast, identifying the trace varia-

bles is not knowledge-free, because everything starts

with the context of data, as well as consultation with

subject matter experts and theory—which is where we

differ significantly from the ’anti-theory’ trend in big

data. [23,24] In other words, while identifying the traces

requires knowledge, it is not the case with the major

and minor longitudinal trends, which are identified

without any bias towards what we might expect the

trends to be. Said another way, we let our multiple clus-

tering methods corroborate themselves mathematically—

which is the goal of such machine driven techniques as

k-means, SOM, latent growth modeling, etc—and then

investigate those major and minor trends to assign con-

textual meaning.

For example, in our study of depression and physical

wellbeing, we identified eighteen different cluster trajecto-

ries. And, in our public health study, we arrived at a

seven-cluster solution. Finally, in our allostatic load study,

we identified nine clusters, which are shown in Table 2.

Despite the differences in outcome, in all the studies

the goal was the same: to allow the data, through the key

traces identified, to interact with, speak to, temper,

FIGURE 5

Theoretical map of allostatic load as complex clinical construct.
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impact, disagree with, modify, or corroborate the theoreti-

cal model. The model that proved the best fit, based on its

corroboration with our theoretical map, is the one used.

That is not, however, where the search for trends needs

to stop. We can go on to identify subtrends (and even

sub-sub-trends) for any particular cluster (as long as the

data support this), thereby potentially giving us a hierar-

chy of models that range from a single model for the

entire database of cases (which may not achieve much

more than conventional analytic approaches) all the way

down to a model for each individual case (which is

unlikely to provide novel or useful insights).

It is because of our knowledge-free approach to clus-

tering that our method is a data-driven special case of the

inverse-forward problem: we start with data analysis to

identify trends; then we move to and develop the theoreti-

cal model to organize the causal mechanisms for the

trends; then we go back to the data to identify sub-trends

if need be and also model the mechanisms identified; and

then back to the theoretical model. As the data grows in

size with the addition of cases or time-stamps, we can

repeat the process, hence the method scales as well.

2.2.2. Longitudinal Clustering

Second, it is unique in that we use vector quantization

to engage in longitudinal clustering. We need to empha-

size that Step 5 involves clustering case trajectories; not

static profiles, as is done in traditional clustering. To clus-

ter cases longitudinally, we treat each time instance as a

measure, and the total of time instances/measures as the

longitudinal k dimensional vector profile for each case. In

turn, these trajectories can be combined (appended to

one another) so that the cluster solution is based on simi-

larities in evolution across all of the trace trajectories. For

example, in our study of international health we appended

the trajectory for per-capita GDP with the trajectory for

longevity rates for each of the 156 countries in our

database.

TABLE 1

The Seven Factors (Traces) for Allostatic Load

Biomarkers

Factors/Componentsa

Blood
Pressure

Metabolic
Syndrome Cholesterol

Proinflammatory
Elements

Stress
Hormones Blood Sugars

Stress
Antagonists

Systolic BPb 0.880 0.158 0.060 0.132 0.054 0.130 20.106
Diastolic BPb 0.883 0.181 0.120 20.052 0.141 0.020 0.220
Waist to hip ratio 0.305 0.700 20.090 0.113 0.150 0.308 0.294
HDLc 20.096 20.829 0.103 20.084 2.0191 20.129 20.122
Insulin 0.082 0.677 0.030 0.379 0.025 0.411 20.007
Triglycerides 0.164 0.786 0.297 0.113 0.039 0.235 20.093
Total cholesterol 0.099 20.005 0.980 0.021 20.033 0.011 20.011
LDLd 0.098 .095 0.935 0.021 0.040 20.077 0.093
IL6e 0.030 0.271 20.141 0.786 0.000 0.169 20.257
Fibrinogen 0.001 20.009 0.092 0.804 20.037 0.148 20.096
C Reactive Proteins 0.071 0.249 0.100 0.816 0.033 0.185 20.259
Cortisol 0.094 20.046 20.008 20.119 0.613 20.093 0.264
Norepinephrine 0.124 0.237 0.006 0.124 0.889 0.075 20.001
Epinephrine 0.112 0.077 20.028 20.085 0.855 20.016 0.178
Dopamine 0.044 0.190 0.000 0.020 0.888 20.006 0.124
Hemoglobin A1c 0.036 0.208 20.059 0.238 20.018 0.887 20.163
Glucose 0.115 0.355 20.015 0.130 0.006 0.895 20.015
DHEASf 20.005 0.127 0.110 20.098 0.226 20.005 0.729
Peak Flow 0.208 0.307 20.089 20.286 0.111 20.004 0.629
IGF21g 0.031 20.081 0.020 20.190 0.026 20.162 0.719

aThe allostatic load factor structure was obtained using a principal components analysis with promax solution. Biomarkers were retained for the factor

on which they loaded the highest, with a minimum loading of 0.613.
bBlood pressure.
cHigh density lipoprotein.
dLow density lipoprotein.
eInterleukin 6.
fDehydroepiandrosterone sulfate.
gInsulin-like growth factor.
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2.2.3. Clustering to Corroborate

Third, it is unique in that we use k-means and the

SOM as a method of corroboration. k-means is a parti-

tional (as opposed to hierarchical) iterative clustering

technique that seeks a single, simultaneous clustering

solution for some proximity matrix. For k-means, refer-

ence vectors are centroids, representing the average for all

the cases in a cluster. The SOM is a topographical artificial

neural network that maps high-dimensional data onto a

smaller, three-dimensional space, while preserving, as

much as possible, the complex patterns of relationships

amongst these data. For the SOM, reference vectors are

actual points, neurons, which represent the weighted aver-

age of the cases clustering around it. Both k-means and

the SOM are forms of unsupervised learning, as cluster

membership is not known ahead of time.

In terms of a case-based density approach, these meth-

ods are used in combination as follows: k-means is used first

because it requires that the number of centroids be identi-

fied ahead of time, based largely on some rationale, even if

tentative or conjectural. As shown in Table 2, following con-

vention (and as discussed earlier), the goal of multiple runs

is to find a solution that fits the data well and resonates with

our theoretical model, even when exploratory.

Next, the SOM is run. Because the SOM is entirely

unsupervised, if it arrives at a solution similar to the

k-means this provides an effective method of corroboration.

The closer the final quantization error and final topographic

error are to zero, the better the fit of the model.

The SOM graphs its cluster solution onto a variety of

three-dimensional, topographical maps. The three we typi-

cally use are the u-matrix, eigenvector map, and compo-

nents map. On the u-matrix and eigenvector maps, cases

most like one another are graphically positioned as nearby

neighbors, with the most unlike cases placed furthest

apart. Both maps are also topographical: valleys, or darker

colored, areas are more similar in profile; while hilly, or

brighter colored areas, are more distinct. The component

maps (which we will discuss in Step 10) visualize how

each of the variables (traces) from the complex profile of

study contribute to the final cluster solution and to the

positioning of cases on the u-matrix and eigenvector map.

TABLE 2

The Nine Clusters (Major and Minor Trends) for Allostatic Load

Factor/Componentsa

Range (min � max)

Clustersb

ANOVA
F testc

1: Low
Cholesterol 2: Healthy

3: High
Blood

Pressure

4: Low
Stress

Hormones
5: Metabolic
Syndrome

6: High
Blood
Sugars

7: Low
Stress

Antagonist

8: High
Stress

Hormones

9: High Pro-
Inflammatory

Elements

Stress hormones
(23.02 � 3.11)

20.79d 0.33 0.35 20.92 0.66 20.22 20.62 1.03 20.30 118.41*

Metabolic syndrome
(22.81 � 2.90)

20.55 21.08 20.40 0.16 1.22 1.00 20.74 12 0.95 177.97*

Proinflammatory
(23.03 � 3.08)

20.41 21.19 20.71 0.29 0.99 0.57 20.27 0.12 1.08 154.72*

Cholesterol
(24.69 � 2.75)

21.12 0.06 0.42 0.73 0.73 20.01 20.08 20.69 20.82 93.77

Blood sugars
(21.83 � 6.70)

20.32 20.48 20.36 20.13 0.18 3.71 20.25 0.08 0.36 215.42*

Stress antagonists
(23.86 � 2.26)

0.31 0.22 0.58 0.14 0.35 20.10 21.7 0.30 20.73 102.06*

Blood pressure
(23.91 � 3.17)

20.60 21.10 0.94 20.06 0.47 0.26 0.15 0.21 20.52 80.78*

N 5 96e N 5 138 N 5 155 N 5 169 N 5 144 N 5 35 N 5 109 N 5 146 N 5 104

aThese are the seven factors from Table 1, used to construct the different profiles for the nine clusters. Included below each factor is its min and max

score possible, which comes from summing the biomarkers that loaded on it and converting this sum into a z-score.
bThis 9-cluster solution was obtained using k-means, with standard Euclidian distance measures; convergence criterion was set to zero.
cUnstandardized F scores (ANOVA) demonstrating, for descriptive purposes only, the relative impact the seven factors had in determining cluster mem-

bership (* 5 F test was significant at .000. The factors with the three highest scores are highlighted).
dThe score for each case, for each of the seven factors, was computed (as noted in ‘‘a’’ above) by summing each case’s scores on the biomarkers for

each factor, as shown in Table 1. In turn, these summed factor scores were converted into z-scores to normalize the data.
eNumber of cases in each cluster.
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A good example of this output comes from our study on

depression and physical wellbeing. As Shown in Figure 6,

Map A and Map B are graphic representations of the cluster

solution arrived at by the Self-Organizing Map (SOM) Neural

Net, referred to as the U-Matrix. In Figure 6, Map A is the

three-dimensional (topographical) u-matrix: for it, the SOM

adds hexagons to allow for visual inspection of the degree of

similarity amongst neighboring map units; the dark blue

areas indicate neighborhoods of cases that are highly simi-

lar; in turn, bright yellow and red areas, as in the upper right

corner of the map, indicate cases that are very different from

the rest. Map B is a two-dimensional version of Map A that

allows for visual inspection of how the SOM clustered the

individual cases. Cases on this version of the u-matrix (as

well as Map A) were labeled according to their k-means clus-

ter membership (the 18 cluster solution we discussed ear-

lier) to see if the SOM arrived at a similar solution, which

(roughly speaking) it did.

2.3. Clarification of the Difference between Steps 2 – 5 and
Steps 6 – 8

Before proceeding, and as a point of clarification, in

steps 2–5 we are still dealing with data and there are no

dynamic models involved yet. In steps 6–8 we are building

the microscopic vector field f to use in the ODE model

[Eq. (1)] to capture the microscopic movements of individ-

ual trajectories and in the PDE model [Eq. (2)] to capture

the macroscopic trends in the form of motion of densities.

In other words, it is in Steps 6–8 that we are doing the

actual functional modeling using genetic algorithms and

curve fitting algorithms, which we explain below. Hence,

steps 6–8 deal with the actual model building process i.e

the microscopic and macroscopic models in the form of

the vector field ODE and the density PDE.

2.4. Microscopic and Macroscopic Models
To construct our microscopic model (Steps 6 and 7),

we employ a combination of genetic algorithms and

ODEs; and to construct our macroscopic model (Steps 8

and 9), we employ the continuity (advection) PDE in

application to the vector field generated by our micro-

scopic model. As such, before moving on to our next set

of steps, a bit of detail on the mathematics behind them

is necessary – for a complete explanation, see [4]. Before

proceeding, however, just to make clear: we use the longi-

tudinal trajectories of the traces; to which we fit a micro-

scopic vector field f ; from here we used the advection

PDE (see below) to simulate the motion of a density of

initial conditions q0ðxÞ i.e. the macroscopic movement qðx
; tÞ of an ensemble of initial condition of our choice—

which is usually motivated by the problem at hand as well

as the data—to investigate the macroscopic movement.

Here, then, are the microscopic and macroscopic mod-

els upon which our approach is based:

FIGURE 6

The eighteen cluster solution for depression/physical wellbeing study.
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Microscopic model for nonlinear evolution of each case trajectory

+

x05f ðxÞ; xð0Þ5x0; x 2 X � RK

(1)

Macroscopic model for the linear evolution of densities of cases

+

qt1r � ðqf Þ50; qjCi
50; qðx; 0Þ5q0ðxÞ:

(2)

2.5. Steps 6 and 7: The Microscopic Model and Steady-State
Behaviors

In addition to the mathematics upon which they are

based, Step 6 and Step 7 involve a rather complicated set

of procedures, which we have outlined in detail elsewhere.

Our goal here is to provide a quick overview of the proce-

dures involved in completing them. For more details see

[4,5].

2.5.1. Identify the Data-Driven Vector Field

In terms of constructing the microscopic model, the

form of the vector field f , which is a part of the ODE (1), is

completely unknown. In other words, we do not have a pre-

conceived function for the vector field model. As such – and

for a second time – we employ our knowledge-free approach

to modeling: this time looking for the best fit among polyno-

mials of arbitrary degree using genetic algorithms.

To run our genetic algorithm, we used Eureqa’s software

http://formulize.nutonian.com. The component functions

of the vector field are constrained to have a polynomial

form i.e. powers of trace variables with addition, subtrac-

tion, multiplication, and constants. We generally choose a

polynomial fit without any constraint on the degree, and

use the mean squared error with the Akaike information cri-

terion as a measure of error. The software provides a mea-

sure of stability and maturity, where ‘stability’ refers

proportionally to how long ago the top solutions were

modified among the multiple solutions provided; and

where ’maturity’ refers to how long ago any of the solutions

have improved. Stability and maturity values close to 100

percent mean that the solutions cannot be improved any

more. The software shows multiple solutions ordered

according to their level of complexity of polynomials and

level of fit. The top solutions are extremely complicated pol-

ynomials with a very good level of fit (i.e., lowest error),

whereas the bottom solutions are extremely simple and

thereby giving the worst error. The mid-range solutions are

the best in terms of complexity of polynomial terms and

error fit.

2.5.2. Validity Check

When stability and maturity are close to 100 percent, this

indicates that not much improvement in the error is going

to happen. The top to mid-range solutions are copied as

seeds and the algorithm is rerun to obtain a refinement of

solutions. The error values are examined to ensure they are

to the order of 1e24 or lesser using the stability and matu-

rity approach. For more information please go to http://for-

mulize.nutonian.com/documentation/eureqa/.

The genetic algorithm also allows for other error crite-

ria and other kinds of ‘function fitting’ ranging from trigo-

nometric to hyperbolic, rational, exponential and other

complicated functions, but we chose polynomials because

they are known to be dense in many complicated function

spaces and are easier to handle when used as component

of a vector field for an ODE. They are also known to cap-

ture well most complex phenomena such as chaotic

attractors, etc. Experimentation with different error

criteria often shows the minimum mean squared error

(with the Akaike Information Criterion) between the

model and the velocity data gave the lowest error values

of less than 1e24. For a list of error metrics available

please visit http://formulize.nutonian.com/documenta-

tion/eureqa/general-reference/error-metrics/and for a list

of functions available to fit, please visit http://formulize.

nutonian.com/documentation/eureqa/general-reference/

building-blocks/. Our attempt to fit a curve to this data-

driven vector field constitutes another of the novel aspects

of our approach. We chose polynomials since (a) they are

known to be dense in a variety of complicated functional

spaces, and (b) they are easier to simulate when used as

vector fields in ODEs.

2.5.3. Obtaining the Microscopic Model

To obtain a vector-field model for the velocities of the

traces, we use a curve fitting algorithm to fit each case tra-

jectory with a smooth curve; which we then differentiate

with respect to time. MATLAB software was used to fit

piecewise cubic Hermite interpolant polynomials (to mini-

mize overshoot and oscillation) using the pchip command.

The phcip interpolant is also known to be’’ shape preserv-

ing’’ and known to respect ‘‘monotonicity’’ in addition to

being less expensive to set up numerically, and hence the

reason for our choice. The first derivative is also known to

be continuous and hence it is easier to differentiate the

interpolant and evaluate the derivative of the function

using the fnder command in MATLAB. Pictures of the

actual trajectory and the Hermite interpolant were also

used to visually make sure that the fit was good. Since the

fit is an interpolant, the value of the trajectory at the

known instants of time are exactly matched along with a

smooth first derivative due to the nature of the Hermite

basis functions. For an example demonstration please go

to http://in.mathworks.com/help/matlab/ref/pchip.html.

Our purpose in doing so is to find the instantaneous (con-

tinuous) velocities for the time instants provided by the

data—which we discussed above in Step 2. A discrete
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velocity vector f ðxkÞ is thus obtained, situated at each of

the cases xk.

2.5.4. Searching for Complex Steady-State
Behaviors

The utility of the microscopic model is that, unlike the

cluster model, it is devoid of cases, constituting, instead,

the data-driven space of all possible trajectories. Equally

important, it can be visualized as a movie across all

instantaneous time-stamps in the database. As such, the

model can be visually inspected to identify important

steady-state behaviors and to note the manner in which

the trajectories evolve across continuous time, including

changes in velocity.

For example, Figure 7 shows the state-space for our

depression and physical wellbeing study, which included

84 monthly time-stamps across a 7-year period of time.

Ten time-stamps are shown, beginning with four time-

stamps from the first year (3 months, 6, months, 9

months, and 12 months) and then one time-stamp for

FIGURE 7

Microscopic model for depression and physical wellbeing study.
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each subsequent year, each constituting the point at

which new data were collected. Looking at the time-

stamps, one sees (1) the emergence of stable spiraling

equilibrium points marked in red, which enter the relevant

regions of the state space for time-stamps 3 through 24;

(2) an unstable spiraling equilibrium point appearing and

leaving the state space between time-stamp 36 and 84;

and (3) a saddle appearing at time-stamp 84.

Because, in our approach, the ODE that models the

evolution of depression trajectories is non-autonomous

_x5f ðx; tÞ, time t is an independent variable and hence the

vector field changes it nature as time evolves, as seen in

the emergence and disappearance of various steady-state

and transient behavior (such as rifts etc.). This is one of

the main advantages of using an ODE to model the trajec-

tories: both the steady-state and transient behaviors of tra-

jectories can be studied with time as an independent

variable (which allows for change of these behaviors

across time) by using the multiple ODE models (both

autonomous and non-autonomous) that the genetic algo-

rithm fits as possible explanations of the trajectories from

the standpoint of ODEs.

2.6. Steps 8 and 9: The Macroscopic Density Model
With the cluster and microscopic models complete, the

next stage is to assemble the macroscopic model, which

involves two key steps.

2.6.1. Simulating the Transport of Densities

First, we take the vector field f from our microscopic

model—which is governed by the ODE—and use the

advection PDE to translate it into the macroscopic motion

of case-based densities. In doing so, we add a third level

to our approach, focused on the macroscopic, nonequili-

brium properties of the system as a whole.

Our approach is motivated by thermodynamics [25],

where the state of the system is the characteristic of a

density of particles and their properties (as in the case of

temperature or pressure) rather than the individual par-

ticles themselves. As we discussed earlier, the major chal-

lenge of modeling longitudinal data is that trajectories are

often highly complex. For example, in our study of inter-

national health, our microscopic model – while useful for

identifying major and minor trends and steady-state

behaviors – was still incredibly dynamic (Figures 3 and 7).

In such instances, our approach is useful because, Haken

[26], it models the ensemble of cases as the macroscopic

movement of densities across continuous time; which are,

generally speaking, lower dynamic and therefore easier to

model for common patterns and trends across time.

The key aspect of the advection PDE is that it models

the transport of a physical quantity according to a given

vector field f (as in the case of our microscopic model) in

addition to conserving the physical quantity itself. The

dynamical state of the advection PDE is a density q, which

is a function of both space x and time t. In turn, the den-

sity function q is basically the physical quantity per unit

area in two dimensions.

Given an initial distribution of cases q0ðxÞ, the advec-

tion PDE simulates the evolution of q0 under the assump-

tion that (a) the total number of cases remains the same,

and (b) each case x moves according to the velocity vector

f ðx; tÞ. The boundary condition qjCi
50 ensures that no

new cases enter the state space through the inflow portion

of the boundary given by

Ci5fx 2 @X : f ðxÞ � g < 0g; (3)

where g stands for the outward normal on that boundary

@X . And, we use the vector field f obtained in microscopic

model to simulate the advection equation given in (2)

along with the boundary condition (3). As a final note, the

validity check for the motion of densities is mathemati-

cally inherent because the vector field f is already checked

in the microscopic model. (For more details on our

approach, see [4,5].)

2.6.2. Simulating Initial and Novel Conditions

With the macroscopic model built, the next step (Step

9) is to run it—which we do by introducing known or

novel sets of initial conditions. Unlike the microscopic

model, which is devoid of cases, the macroscopic movie

reintroduces different distributions of cases back into the

model to explore their actual trajectory amongst all possi-

ble trajectories in the microscopic model.

For us, these initial conditions come in three types: (1)

conditions based on the initial dataset upon which the

microscopic vector field f was based; (2) conditions based

on the major and minor trends identified in the cluster

and microscopic models; and (3) novel conditions

researchers wish to explore, based on the results from

running conditions (1) and (2).

Simulating these ‘various’ initial conditions is impor-

tant to our approach because it brings us full circle, mov-

ing us from the inverse to the forward problem in physics:

in other words, while we use the microscopic model f to

simulate the macroscopic evolution of densities (using the

advection equation), we do so by returning to the initial

conditions of the raw data (be it known or novel) for

corroboration.

For example, Figure 8 provides a series of snapshots

from a simulation we made for our international health

study. In terms of reading Figure 8, the x-axis represents

GDP and the y-axis represents life expectancy; also, scores

on the axes were converted to z-scores for normalization

and comparison. In this example, the initial conditions

t 5 0 (which are shown in Models A and B) were based on

the original Gapminder dataset http://www.gapminder.
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org/. (The complete movie can be found at http://www.

personal.kent.edu/~bcastel3/macroscopic_model.mp4.)

In contrast, Figure 9 provides a series of snapshots from

a simulation we made for our depression and physical well-

being study. In this simulation, five different sets of initial

conditions we explored, based on key trends identified in

the cluster and microscopic models. As with Figure 8, scores

were converted to z-scores, with the y-axis representing

physical wellbeing; and the x-axis representing depression.

As these two examples illustrate, our macroscopic

model adds several advantages to our multi-level, case-

based approach to modeling complex health trajectories.

1. To begin, different regions of the simulation can be

explored to see how different sets of cases evolve

(speed up, slow down, spread out, condense inward

toward the center of the density, etc) across time.

2. And, these movements can be calibrated using a

number of indicators, such as the contour plot of

speed (magnitude of velocity)—as shown in the

lower right graph in Figure 8.

3. Also, the nonequilibrium clustering of trajectories

during transient times can be studied by looking at

the Lyapunov density plot. In Figure 9, for example,

high values in the Lyapunov density plot (shown in

the upper right graph) indicate that a large number

of trajectories have squeezed through that region in

the state space.

4. We can also use these simulations to predict the longitu-

dinal evolution of cases across time and space.

5. And, we can study the complexity of various tran-

sient case dynamics, which we do by stopping the

evolution of the model prior to some key moment

in the simulation.

6. Also, based on the exploration of various novel

conditions, predictions can be made for the evolu-

tion of case profiles and time instants that are not

part of the database.

7. And, multiple models can be tested simultaneously

to find the model that best explains the data.

8. Finally, new data can be incorporated with ease

into the modeling process, thereby providing us

with a means to improve the model’s fit and pre-

dictive value in response to the database’s evolu-

tion, expansion, development, etc.

2.7. Step 10: Constructing Multiple Accounts
Consistent with the overarching theme of case-based

complexity—which seeks to find differences through idio-

graphic, case-comparative analysis—our approach, once

again, distinguishes itself from convention. In Step 10, we

FIGURE 8

Macroscopic model of international health study.
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do not seek to build a single causal model or overarching

account of the data. Instead, we seek to construct multiple

models, multiple accounts. And, we aim these multiple

accounts at explaining (exploring, understanding, etc.,)

key differences, (distinctions, variations, nuances etc.,) in

the data.

Equally important, we assume that these multiple

accounts come from the theoretical map—as constructed

in Step 4—and its k dimensional profile of traces. And we

assume—as discussed in Step 1—that this map and pro-

files are best studied as complex systems. As such, while it

is useful to explore variable-based trends across data; in

our approach the emphasis is on the intersection of traces

and their self-organizing and emergent impact on some

initial (dependent/outcome) trace of concern.

With our map and case-based profile in hand, we con-

struct our multiple accounts by employing the following

two-stage process:

2.7.1 Corroboration of the Three Models

During the course of completing steps one through

nine, a significant amount of information is generated. It

is therefore necessary, as a first course of action, to sum-

marize and further corroborate these data into a multi-

level, working narrative to identify key issues for which we

seek to develop an account.

1. The Cluster Model: An easy place to start is with

the cluster model. Here, the goal is to verify further

the veracity of the cluster trajectories and the

major and minor trends they represent. Such verifi-

cation includes working with context experts to:

1. determine if the clusters make empirical or the-

oretical sense.

2. examine if certain clusters need to be discarded

or combined to create a larger cluster.

3. determine – as discussed in Step 2.2.1 – if fur-

ther subclustering is necessary or empirically or

theoretically meaningful.

4. name the final cluster and subcluster solutions,

as well as major and minor trends, based on

how their trajectories differ from one another.

5. assemble all this information into a working

narrative.

6. And, finally, identify key issues for which an

account of this narrative is required, including

hypothesizing how the other k dimensional

traces in the theoretical model and case-based

profile might account for these differences.

For example, in our study on depression and physical

wellbeing, the two lead clinicians (both authors on the

current paper) had to pore over the data to make sure

everything made empirical sense, including tentatively

hypothesizing how the other traces in the theoretical

model might account for these differences.

The same was true of our allostatic load study, albeit at an

even greater level of detail, as the clusters for this study

were based on our factor analysis (we discussed this earlier);

which was, in turn, based on our 20 key biomarkers. As

such, the biologists and clinicians on our team had to cor-

roborate the biomarker linkages found in our cluster solu-

tions, shown in Table 2, to make sure they fit with what they

and the literature knew to be biologically true or possible.

FIGURE 9

Macroscopic model for depression and physical wellbeing study.
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In turn, the nine clusters shown in Figure 10 also had to

make sense in terms of our theoretical model of allostatic

load (See, from earlier, Figure 5). For example, Map C in Fig-

ure 10 is a graphic representation of the relative influence

that the seven traces (shown in Table 2) had on the SOM

cluster solution. The SOM generated a mini-map for the

seven traces, each of which can be overlaid across maps A

and B. Each of these mini-maps was also visually inspected

to examine what its rates were across the different neighbor-

hoods (clusters of cases, See Map B, Figure 10). Dark blue

FIGURE 10

The nine clusters for allostatic load as mapped by the SOM.
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areas in Map C indicated the lowest rates for a factor; and

the bright red areas indicated the highest rates for a factor.

For example, looking at the map for Factor 6 (blood sugar),

its rates were extremely low across most of the map, except

for the lower right corner, where (looking at Map B) the

SOM placed Cluster 6.

2. The Microscopic Model: Next, the insights from the

cluster model need to be integrated and further

corroborated with the microscopic model. Such

integration and corroboration includes working

with context experts to:

1. verify the empirical and theoretical utility of the

various temporary equilibrium behaviors (tem-

porary because the behavior exists for one time

instant and changes for later instants because of

the non-autonomous nature of the vector field)

initially identified during Step 2.4.4 of the

model building process.

2. use the cluster trajectories to visually corrobo-

rate the manner in which the microscopic vec-

tor field evolves across continuous time.

3. examine how key velocity change moments in

the microscopic model coincide with key

changes in the trajectories of various major and

minor clusters. This is done by (a) identifying

the region in the state-space where the behavior

occurs; (b) studying the clusters corresponding

to the regions; and (c) watching the movies and

the actual trajectories from data (both overall

and at the interesting time instants) to see if

they corroborate one another.

4. use the findings from the cluster and micro-

scopic model to identify different regions of the

state-space that are qualitatively important, and

to then label them accordingly.

5. and, finally, hypothesize how the other k dimen-

sional traces in the theoretical model and case-

based profile might account for these differen-

ces in the state-space and their respective evo-

lution across time-space.

For example, as shown in Figure 7, in terms of our

study of depression and physical wellbeing, we identified

five major regions into which we could fit all 18 of our

clusters, based on the major and minor trends we noted

in our cluster solution. Roughly speaking, these regions

approximated how physical wellbeing and depression

work together as a way for sorting clusters according to

their key differences. Figure 9 – which we already men-

tioned but will discuss further in a moment – provides the

name of these five major regions. In addition, we con-

firmed that the temporary equilibrium behaviors from our

microscopic model (Figure 7) coincided with key shifts in

the cluster trajectories from our cluster model.

3. The Macroscopic Model: The last part of our cor-

roboration process is to add the macroscopic

model to our multilevel narrative by integrating the

insights from its density simulations. Such

FIGURE 11

The seven cluster network map for the Summit county community health study.
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integration and corroboration includes working

with context experts to:

1. confirm (both empirically and theoretically) the util-

ity of the results gained in Step 2.5.2 of the model

building process, which includes validating the vari-

ous novel scenarios simulated, based on the results

from the microscopic and cluster models.

2. verify how and also when the temporary equi-

librium behaviors identified in the microscopic

model manifest themselves in the density

model, given that both models are based on the

same vector field generated by the ODE.

3. and, finally, hypothesize how the other k dimen-

sional traces in the theoretical model and case-

based profile might account for these differen-

ces in the density model.

For example, looking at Figure 9 from our depression

and physical wellbeing study, we see two snapshots, t 5 0

months and t 5 84 months, which we labeled according to

the results from our cluster and microscopic models. Dur-

ing the course of exploring these five simulations, one of

the findings (amongst many) that stood out was how the

density plot for the healthiest region (lower right) changed

across time, moving more toward the center. We also

noted how this ‘healthier’ plot shifted and became more

distributed across time, with the upper right side stretched

more toward increased depression, and the lower right

stretched more toward decreased physical wellbeing. The

question we sought to answer, based on this finding, and

for which we engaged in a series of hypotheses, was why?

Answering this question takes us to the final stage of our

model building process: constructing multiple accounts.

2.7.2. Constructing Multiple Accounts

The final stage of the modeling process is to construct

a series of accounts (causal models) that help make sense

of the complex health trajectories studied. Again, no one

account is expected to explain everything. Instead, we

seek multiple accounts, multiple explanations.

To do so, we begin with method. Unlike the previous

steps, however, this last stage need not follow any particu-

lar methodological protocol. In fact, in our work we have

employed a variety of methods, including statistical, quali-

tative and historical analysis. Of these methods, however,

perhaps the most useful is to rerun steps five through

nine.

As a quick overview: starting with the cluster model,

one would proceed, as required, to examine a new set of

traces. However, this time there is an added dimension, as

the goal is to construct an account of how the nonlinear

dynamics of these additional traces coincide, interconnect

with, influence or impact the original outcome traces. For

example, in our depression and health study, we were spe-

cifically interested in how the complex intersection of

employment, income and negative life events impact—

across time—our 18 cluster trajectories, slowly stitching

these new traces together to form a complex model of

these data.

Nonetheless, often one does not have the luxury of

continuous data, or researchers may be concerned with

traces of a different type, as in the case of discrete, quali-

tative or historical data, or they may be interested in other

methods, as in the case of network analysis.

For example, in our public health study, we used multi-

ple linear regression and the unstandardized F-scores

from our k-means cluster analysis to determine the rela-

tive impact that various compositional and contextual

traces had on our community-level health outcomes.

In this same study we also used a combination of qual-

itative and historical data. For example, to examine the

views and opinions of people living in the poorer com-

munities surrounding the two urban centers in our study,

we turned to a series of focus groups that local public

health researchers had done. And, to make historical sense

of how out-migration impacted community-level health,

we turned to a local newspaper series on access to

healthcare.

Going even further, we employed the tools of complex

network analysis, examining (pace Christakis and Fowler’s

work on obesity networks [27]) how changes in commun-

ities in one part of our county-wide network influenced

changes in another. Figure 11, for example, is a network

representation of our cluster analysis data. The network is

made up of the seven clusters we identified in our study,

labeled 1 through 7. Around each cluster are the commun-

ities associated with it.

In terms of reading this network, the greater the dis-

tance between cluster centers, the less alike these clus-

ters are in health and economic wellbeing; and, the

greater the distance a community is from its cluster

center, the less similar its configuration is to the other

communities in its cluster. One of the questions we

examined using this network was: given changes in the

overall economic wellbeing of all twenty communities,

which of the poorer communities fell further into a pov-

erty trap, relative to the rest? The answer was found in

the bottom two clusters, both 2 and 7, with the com-

munities in Cluster 7 having the poorest, overall, health

outcomes.

Still, despite these differences in method and tech-

nique, when it comes to the final step of our case-based

density approach, two things are consistent in the account

building process. The first has to do with focus: no matter

what the technique used, the purpose is to construct mul-

tiple accounts that help explain the nonlinear dynamics of

complex longitudinal health data. More specifically, this

means making sense of:
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1. the different cluster trajectories;

2. major and minor trends;

3. various transient, steady-state behaviors;

4. the movement (across space/time) of various den-

sity distributions;

5. and, the evolution and dynamics of different

regions of the state-space, including:

a. differences in the speed and velocity of key tra-

jectories; and

b. the prediction of different known or novel den-

sity outcomes.

The second has to do with the preliminary division of

the data. Regardless of the method used, before one con-

structs any account, the data need to be divided according

to each case’s cluster membership and the corresponding

trend or region of the state-space to which it belongs. In

other words, it is necessary to divide the database into

separate sub-databases according to the different clusters

or trends to which cases belong. Once divided, one can

then explore these clusters and trends separately and in

comparison to one another, looking for different patterns

within and also across clusters and trends.

With the construction of these different and multiple

accounts complete, one has reached the end of the mod-

eling process, that is, unless, as a function of the study,

new or novel additional traces or cases are included, and

therefore further modeling is required.

3. CONCLUSION
In this paper, we have brought together the various

steps outlined in our previous research [4,5] to organize

them into a single method, called a case-based density

approach (CBD),which involves ten steps.

In terms of summarizing these ten steps, our main the-

sis is that complex longitudinal data are inherently multi-

level, case-based systems that manifest themselves from

the bottom-up (as the microscopic, high-dynamic behav-

ior of individual cases) as well as the top-down (as the

macroscopic, low-dynamic behavior of densities).

Our secondary thesis is that to model such complex

case-based, longitudinal data, researchers need to

acknowledge that singular one-size-fits-all models are not

sufficient; instead, new and multiple models are necessary.

Furthermore, these multiple accounts need to be data-

driven and predictive (if only in the short range).

Third, we acknowledge that complex phenomena can-

not be perfectly (or often even directly) modeled using

mathematical models. Instead, one typically studies the

traces of a system’s complexity. Related, these traces are

often unknown; and only identified through multiple

exchanges with subject matter experts. However, modeling

the traces of complexity is the first step towards under-

standing a system’s causal mechanisms, which is what we

have endeavored to achieve with our approach.

Given these three main points, to model complex

health trajectories it is necessary to draw upon a wide

variety of concepts and techniques from across the com-

plexity sciences, including the ideas of nonequilibrium

statistical mechanics, transport theory and thermodynam-

ics. To model the motion of density of cases, we specifi-

cally employed the advection PDE, which serves as a

conduit to translate the microscopic motions modeled by

the vector field f into the macroscopic evolution of the

density q, while preserving the number of cases intact.

This is a very novel feature of our approach, which has yet

to be used to observe the complex behavior of health tra-

jectories longitudinally in time.

Finally, Step 10 is a very important part of the modeling

process, as it seeks to provide a series of accounts of the

causal mechanisms that drive the nonlinear dynamics of

health trajectories. It is crucial during this stage that the

results do not just show the experts what they want to see.

In other words, the ’knowledge-free’ part of our approach is

crucial, as it also helps to challenge the preconceptions of

the content experts on the study. As such, and as mentioned

earlier, we are currently studying a large sample of the Dia-

mond Prospective Longitudinal Cohort Study to develop fur-

ther this step: our goal is to push the analysis into new and

novel insights that challenge current views on the topic. This

is the future work that is currently underway.
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